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We implemented this model-driven discovery approach using 
our whole-cell model. We compared model predictions and experi-
mental measurements of the specific growth rates of a nonessential 
single-gene disruption library of M. genitalium, for all 86 strains 
for which an experimental rate could be determined5,6 (Fig. 1b). 
We also compared our predictions to a metabolic model based 
on flux-balance analysis7 and found that the whole-cell model 
made more quantitative predictions (Supplementary Fig. 1),  
underlining the need for the whole-cell model.

For 84% of the strains, the specific growth rates determined by 
experiment and simulation were statistically indistinguishable. 
Although our previous analysis showed that the model could pre-
dict the phenotypes of all 525 gene disruption strains with high 
accuracy (P < 10−7)5, a null test applied only to the set of 86 viable 
strains (wherein the null hypothesis is that all viable strains grow 
at the same rate as the wild type) would yield a success rate of 94%. 
In other words, most of the viable strains grow at rates that are 
essentially the same as those of the wild type, and some of these 
are not captured by the model.

Therefore, the greatest value of this data set is found by con-
sidering the discrepancies between the model and experimental 
data. By combining our quantitative growth rate measurements 
and predictions with the qualitative information from our pre-
vious work, we produced a detailed map of model-experiment 
comparisons for all 525 genes in the chromosome (Fig. 1c).  
To our knowledge, this is the most comprehensive and quantita-
tive comparison of any large-scale cellular model’s predictions 
to growth-phenotype data, as other studies (including our own 
work) either considered only a small fraction of the total non-
essential genes or else made strictly qualitative (growth or no 
growth) predictions5,8,9.

Scrutiny of this comparison map highlighted a small group of 
discrepancies, the resolution of which we hypothesized would be 
most likely to lead to new discoveries. The model–experimental 
data comparisons fell into seven categories, depending on the 
nature of the model prediction and whether a gene’s function 
was well-enough annotated for functional inclusion in the model 
(Supplementary Table 1). Two categories had the richest infor-
mation content. The first group included 13 strains (Fig. 1c) for 
which the model could predict the qualitative essentiality but 
not the quantitative growth rate (P ≤ 0.01). The second group 
consisted of five strains for which the model failed qualitatively, 
predicting a growth rate that was insufficient to sustain life (‘lethal 
zone’; Fig. 1b); we therefore labeled the corresponding genes as 
‘false essential’.

For four of the 18 strains in these two categories, the dif-
ference in growth rate between model and experiment was  
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small (<20%). For the remaining 14 
strains, five of the corresponding genes 
are associated with metabolism, two 
are linked to gene expression, three are 
involved in chromosome condensation 
and the remaining four genes had little or 
no functional annotation (Supplementary  
Table 2). For each of these genes, we 
explored the model’s inability to predict the experimental data, 
looking for a possible mechanism that could explain the discrep-
ancy. We used the whole-cell model and the literature to exam-
ine the ‘molecular pathology’ of each single-gene disruption, 
as described in our earlier work5. Using this analysis, we hypo-
thesized a previously misrepresented or missing function for each 
of the hits for which there was a well-characterized gene annota-
tion (Supplementary Results and Supplementary Fig. 2).

Three ‘hits’ were of particular interest because we could test 
model predictions for them using established methods. These 
hits were all metabolic genes: thyA (thymidylate synthase) and 
deoD (deoxyribose-phosphate aldolase), as previously reported5, 
and MG_039 (glycerol phosphate). Prediction failures of the 
model were quantitative, not qualitative, for all three genes. 
(Supplementary Table 1). For each gene, we identified an alter-
nate metabolic route that could compensate for its disruption. We 
used a strategy based on reduced costs, which are calculated as 
part of the metabolic submodel’s linear optimization method, to 
determine the metabolic fluxes that according to the model were 
limiting cell growth10. Changing the parameter values for these 
fluxes would have the greatest impact on the specific growth rate 
calculated by the model, making them the most likely candidates 
for parameter estimation. For the thyA strain, we found only two 
metabolic reactions by reduced-cost analysis that did not also 
appear in the reduced-cost analysis of the wild-type strain (Fig. 2a).  
Both reactions were catalyzed by thymidine kinase (Tdk).  

ThyA and one of the Tdk reactions have a common metabolic 
product, dTMP, which is required for DNA replication (Fig. 2b). 
Reduced-cost analysis of the deoD strain led to three candidate 
reactions, catalyzed by ThyA, Tdk and pyrimidine-nucleoside 
phosphorylase (Pdp) (Fig. 2c). Of these, only Pdp could compen-
sate for the production of uracil by DeoD (Fig. 2d). For compari-
son, we performed the same reduced-cost analysis using a simple 
FBA framework without the additional constraints imposed by 
the whole-cell model. The stand-alone FBA model was unable to 
identify notable differences in reduced cost between the wild-type 
and disruption strains (Supplementary Table 3).

The reduced-cost analysis for MG_039, whose product con-
verts dihydroxyacetone phosphate to glycerol-3-phosphate, did 
not highlight compensating reactions to MG_039. We therefore 
adopted a different approach, reasoning that growth of the dis-
ruption strain would be more susceptible than that of the wild-
type strain to the inhibition of any candidate enzyme that could 
compensate for MG_039. We searched for metabolic reactions 
that, if constrained in the single-gene disruption, had a stronger 
effect on the calculated specific growth rate than in the wild type. 
Constraining glycerol kinase (GlpK) had the most pronounced 
difference in effect between the gene disruption strain and the 
wild type, sharply reducing the specific growth rate at a flux con-
straint that was over tenfold higher (Fig. 2e). GlpK catalyzes the 
production of glycerol-3-phosphate from glycerol as part of a com-
plex fatty acid synthesis network with at least three interlocking  
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figure 1 | Model-driven discovery and the 
quantitative prediction of growth phenotypes. 
(a) Schematic of a model-driven discovery 
pipeline as facilitated by a whole-cell model. 
(b) Simulated (model prediction, n = 5) and 
experimentally observed (two independent 
experiments with three technical replicates 
each) specific growth rates (µ) for 86 
nonessential gene-disruption strains of  
M. genitalium (top). Error bars, s.d. (n = 5 
(model) and n = 6 (experiment)). Absolute  
values of the difference between model and 
experiment (bottom). The 18 genes exhibiting 
significant (heteroskedastic two-tailed t-test 
and Wilcoxon rank sum test with P ≤ 0.01, 
listed in supplementary table 2) model-
experiment discrepancies are indicated by 
arrows at the top; four of these were small 
in magnitude (gray). Gray shading marks the 
‘lethal zone’: five slow-growing strains that 
the model wrongly predicted to be nonviable. 
(c) Chromosome map with comparison 
between model predictions and experimental 
observations for all 525 M. genitalium genes. 
Number of genes in each category is indicated 
in parentheses. The 18 ‘false essential’ genes of 
interest are indicated in yellow and red.
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cycles (Fig. 2f). The complexity of this 
subnetwork is the most likely reason for 
the failure of the reduced-cost analysis.

In other words, a compensating reaction existed, and was 
encoded in the model, for each of the three cases, yet the model 
failed to correctly predict the specific growth rates of the cor-
responding strains. We hypothesized that the failure was in the 
kinetic rates of the compensating enzymes. The metabolic com-
ponent of the whole-cell model uses the rate of catalysis (kcat), 
multiplied by the enzyme abundance (a dynamic variable in the 
model) as the upper bound of the metabolic flux for a given reac-
tion. Many of the kinetic parameters required to build the original 
whole-cell model had not previously been measured in M. genital-
ium and had to be approximated from measurements in different 
organisms, including the parameters for Tdk, Pdp and GlpK. We 
therefore used the whole-cell model to determine a range for kcat 
values for Tdk, Pdp and GlpK that would reconcile the ∆thyA, 
∆deoD and ∆MG_039 growth phenotypes while minimizing the 
effects on growth of the wild type. For each strain, we plotted the 
absolute value of the difference between the model-predicted and 
experimentally observed specific growth rates as a function of kcat 
(Fig. 2g–i). We then examined all three plots together to deter-
mine a common difference cutoff between experimental and sim-
ulated specific growth rates. The cutoff that produced minimum 
discrepancy for all of the strains was 0.015 h−1, which corresponds 
to roughly 20% of the specific growth rate of the wild type.

Implementing this cutoff, we observed a single range of kcat 
values that minimized the discrepancy between the model and 
experimental measurements for each enzyme. The range for Pdp 
differed in that the upper limit was unbounded. We confirmed 
that the predicted range of kcat values mapped well to the distribu-
tion of experimental measurements of growth rates of single-gene 
disruption strains (Fig. 2j–l).

The kcat ranges, calculated directly from model predictions, 
were experimentally testable. We expressed the M. genitalium  
genes in Escherichia coli, purified the proteins and per-
formed kinetic assays (Fig. 3a–c and Supplementary Fig. 3).  
The measured values corresponded well with the model’s  
predictions and differed by at least one and up to four orders of 
magnitude from the values originally used to train the model 
(Fig. 3d). These results indicate that our model can make accu-
rate quantitative predictions about previously unmeasured  
cellular properties.

As a final step in the discovery process, we incorporated all of 
the newly determined experimental parameters into the whole-
cell model to test whether interactions between these parameters 
existed that might make the resulting model less predictive 
than expected. The new parameters led to better predictions for 
all strains of interest without compromising predictions of the  
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figure 2 | The whole-cell model quantitatively 
predicts rate constants of metabolic reactions. 
(a,c) Reduced-cost analysis of all metabolic 
fluxes in the ∆thyA (a) and ∆deoD (c) single-
gene disruption strains; only the notable costs 
are labeled. (b,d) Schematics of metabolic 
reactions that can compensate for those 
catalyzed by ThyA (b) and DeoD (d). (e) Effect 
of constraining the flux of the GlpK reaction  
on the specific growth rates of ∆MG_039 and 
wild-type strains. (f) Reaction schematic 
including reactions catalyzed by the MG_039 
gene product and GlpK. (g–i) Absolute 
difference between the mean model prediction 
(mod. pred.; n = 6 ) and the mean experimental 
measurement (expt. meas.; n = 5) of specific 
growth rates (µ) for the gene disruption strains 
∆thyA (g), ∆deoD (h) and ∆MG_039 (i) plotted 
against the kinetic rates of the respective 
enzymatic reactions. Dotted gray line indicates 
the cutoff for acceptable error for all strains, 
which was constrained by the local minimum 
observed in the ∆MG_039 strain. Horizontal 
colored bars indicate model-predicted ranges. 
Red triangles indicate original kcat values.  
(j–l) Tdk (j), Pdp (k), and GlpK (l) kcat values 
(left axis) to model-predicted specific growth 
rates of ∆thyA, ∆deoD and ∆MG_039 (right 
axis). Colored bars indicate the kcat ranges 
shown in g–i, and colored regions indicate 
the range of simulated specific growth rates 
determined by the kcat range. A normal fit to the 
experimental specific growth-rate data is shown 
(right); red lines indicate original estimate 
of kcat value used to train the model and its 
corresponding simulated specific growth rate.
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wild-type strain or of other single-gene disruption strains (t-test 
between model and experimental results, cutoff P ≤ 0.01; Fig. 3e).

The predictions for the MG_039 single-gene disruption strain 
made with the computationally derived kcat value were more accu-
rate than those made with the experimentally determined kcat 
value. One reason for this could be that the model prediction for 
the enzyme concentration, which is multiplied by the kcat value to 
determine the upper bound on the flux, is incorrect. However, we 
compared our model predictions for the number of proteins per 
cell with measurements made in the closely related M. pneumoniae 
in ref. 11 and found that the ranges of measured and predicted 
protein count for all three enzymes are roughly consistent with 
each other (Supplementary Fig. 4). Another possibility is that 
GlpK is not the only or most important flux-limiting enzyme, as 
calculated. Finally, the whole-cell model calculates the maximal 
rate of an enzyme as a simple product of the enzyme concentration 
and kcat, but in vivo this will be determined by many other parame-
ters and variables, from the substrate concentration and Michaelis 
constant (Km) to the limits imposed by allosteric regulation and 
the like. One can demonstrate that a limiting concentration of 
intracellular glycerol would be sufficient to reduce the GlpK flux 
bound to the model-predicted values (Supplementary Fig. 5). A 
better understanding and representation of these other processes 
in the whole-cell model would increase its predictive power.

In summary, our whole-cell model accurately predicted mul-
tiple kinetic parameters based on growth phenotypes of single- 
gene disruption strains. Although encouraging, our findings rep-
resent only three instances of validation, so more work will be 
necessary to definitively establish the model’s capacity to predict 
molecular properties. Nevertheless, detailed, molecular-level 
predictions such as we have made, based on phenotypic meas-
urements of cellular populations, would be impossible without a 
comprehensive, whole-cell model that explicitly represents both 
molecular and cellular scales. Overall, these findings represent 
to our knowledge the first application of whole-cell modeling to 
accelerate biological discovery.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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was calculated from the enzyme concentration  
and vmax. t, time. (d) Comparison of kcat values used  
to train the model (‘original’, estimated from organisms  
other than M. genitalium), with model-based predictions and experimental measurements. (e) Predicted and measured kcat values were input into the 
whole-cell model (n = 6) and compared to the experimentally measured (n = 5) specific growth rates and model predictions with original kcat values.  
P values were determined by two-tailed t-test, *P ≤ 0.01. Dashed gray lines, experimental mean. Error bars, s.d. 
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online methods
Single-gene disruption strain simulations and growth assays. 
M. genitalium single-gene disruption and wild-type strains were 
obtained from J. Craig Venter Institute6. Specific growth rates were 
determined according to the colorimetric protocol described in  
ref. 5. Simulations were performed as described5. Simulation results 
can be found at SimTK (https://simtk.org/home/wholecell/).  
Simulated cells were modeled in an environment based on 
Spiroplasma 4 medium. At least six experimental replicates and 
five simulations were run for each disruption strain.

Protein expression. M. genitalium tdk, pdp and glpK genes were 
synthesized by GenScript with E. coli codon optimization. Genes 
were inserted into pGEX-6P-1 glutathione S-transferase (GST) 
expression vectors (GE Healthcare) by Gibson assembly12, and 
sequences were verified. Resulting vectors were expressed in 
DH5α E. coli cells. Cells were lysed by sonication, and GST-
tagged proteins were pulled down using glutathione sepharose 
beads (GE Healthcare). Proteins were cleaved from the beads by 
PreScission Protease (GE Healthcare), and quantified against a 
BSA standard by SDS electrophoresis (Supplementary Fig. 3a–c). 
Final concentrations were: Tdk, 1.3 mg ml−1; Pdp, 0.2 mg ml−1; 
and GlpK, 0.14 mg ml−1.

Kinetic assays. Tdk activity was measured using a spectropho-
tometric assay similar to that described previously13. Reaction 
schema: thymidine + ATP ↔ dTMP + ADP + H+ (catalyzed by 
Tdk); ADP + phosphoenolpyruvate + H+ ↔ pyruvate + ATP 
(catalyzed by pyruvate kinase); and pyruvate + NADH + H+ ↔ 
lactate + NAD+ (catalyzed by lactate dehydrogenase).

In a 75-µl reaction, we added 0.05 M Tris pH 7.2, 1 mM dithio-
threitol, 2.5 mM MgCl2, 5 mM ATP, 0.18 mM NADH, 0.21 mM 
phosphoenolpyruvate, 2.4 µg pyruvate kinase and 1.5 µg lactate 
dehydrogenase in H2O (Sigma). Pyruvate kinase and lactate 
dehrdrogenase were added in excess such that they were not 
rate-limiting (Supplementary Fig. 3e). Thymidine concentra-
tions varied between 0.1 mM and 1.5 mM, and each reaction 
contained of 13 µg of Tdk. Reactions were performed in tripli-
cate. We measured the loss of NADH by measuring absorbance at  
340 nm at 37 °C at 30 s intervals for 10–30 min.

GlpK activity was measured using a spectrophotometric  
assay similar to that described previously14. Reaction schema:
glycerol + ATP ↔ ADP + glycerol-3-phosphate (catalyzed by 
GlpK); ADP + phosphoenolpyruvate + H+ ↔ pyruvate + ATP 
(catalyzed by pyruvate kinase); and pyruvate + NADH + H+ ↔ 
lactate + NAD+ (catalyzed by lactate dehydrogenase).

In a 75-µl reaction, we added 0.05 M Tris pH 7.2, 3.33 mM 
glycerol, 0.1 M KCl, 5.25 mM phosphoenolpyruvate, 2.5 mM 
MgSO4, 0.2 mM NADH, 2.25 µg pyruvate kinase and 1.125 µg 
lactate dehydrogenase in H2O (Sigma). Pyruvate kinase and lac-
tate dehrdrogenase were added in excess such that they were not 
rate-limiting (Supplementary Fig. 3f). ATP concentrations varied 
between 0.033 mM and 1 mM, and each reaction contained of  
1.8 µg of GlpK. Reactions were performed in triplicate. We meas-
ured the loss of NADH by measuring absorbance at 340 nm at  
37 °C at 30 s intervals for 10–30 min.

Pdp activity was measured using a spectrophotometric assay  
similar to that described in ref. 15. Reaction schema: deoxyuridine +  
phosphate ↔ deoxyribose-1-phosphate + uracil (catalyzed by Pdp).

In a 400-µl reaction, we added 10 mM Tris pH 7.3, 10 mM 
phosphate pH 7.3 and 1 mM EDTA in H2O. Deoxyuridine 
(Sigma) concentrations varied between 1.25 mM and 12.5 mM. 
Each reaction contained of 1 µg of Pdp and was conducted at  
37 °C for 9 min. At 45-s intervals, we added 70 µl of 0.5 M NaOH 
to 30 µl of reaction mix to stop the reaction. We determined uracil 
production by measuring absorbance at 290 nm.

Blank controls were performed for all reactions with H2O 
instead of enzyme. NADH and uracil concentrations were deter-
mined from measurements of absorbance at 340 nm and 290 nm, 
respectively, using NADH and uracil standard curves. The maxi-
mal slope of each reaction curve was used to determine its veloc-
ity, and Hanes-Woolf plots were used to determine the vmax and 
kcat (Fig. 3a–c). Hanes-Woolf results were compared to Michaelis-
Menten nonlinear regression results (Supplementary Fig. 3g,h). 
Both methods yielded comparable results.

Comparison of experimental data and model predictions. The 
following statistical measures were taken in analyzing the results 
shown in Figures 1b and 3e: at least six replicates were performed 
for each gene disruption–specific growth rate measurement, and 
15 replicates were performed for the wild type. At least five simu-
lations were run for each model prediction, and 128 simulations 
were run for the wild type. A heteroskedastic two-tailed t-test 
was performed between each set of experimental measurements 
and model predictions. We considered experimental and model 
results to be significantly different if P values were ≤0.01. Owing 
to the small sample size, we wanted to be sure that our results 
were not biased by the distributions of the data or by extreme 
outliers. We performed a nonparametric Wilcoxon rank-sum test 
(also with cutoff of P ≤ 0.01), which identified the same set of 
gene ‘hits’. Finally, from the list of genes with P ≤ 0.01 (18 genes), 
we only considered those that were over or underpredicted by at 
least 20% (14 genes).

Linear regression of kinetic assay data. The following statistical 
measures were taken in computing the results of Figure 3a–c: 
kinetic reactions were performed in triplicate for seven substrate 
concentrations for each enzyme. A linear regression was fit to the 
data, and 99% confidence intervals were determined using the 
standard error of the slope and a t distribution obtained using  
α = 0.01 and degrees of freedom = n – 2 = 19.

Enzyme quantification and kcat range calculations. Isolated 
enzymes were quantified by SDS electrophoresis against known 
quantities of BSA. Band volumes were quantified using Quantity 
One v.4.6.9 software (intensity × area). Linear regressions of the 
BSA standard curve were used to determine the isolated enzyme 
concentration. 95% confidence intervals of the linear regres-
sions were determined using the standard errors of the slope 
and intercept and t distributions obtained using α = 0.05 and 
degrees of freedom = n – 2 (Supplementary Fig. 3a–c). The lower 
enzyme concentration bound and upper vmax bound for each 
enzyme was used to calculate the upper bound of the kcat, and 
the upper enzyme concentration bound, and lower vmax bound 
for each enzyme was used to calculate the lower bound of the kcat 
(Supplementary Fig. 3d).

The final predicted values of kcat used to constrain the whole-cell 
model were 0.215 s−1 for Tdk, 0.5 s−1 for Pdp and GlpK = 0.46 s−1  
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for GlpK. The measured kcat values used were 0.215 s−1 for Tdk, 
78.1 s−1 for Pdp and 0.80 s−1 for GlpK (Fig. 3e). The kcat values 
were input into the whole-cell model and compared to the experi-
mentally measured specific growth rates and model predictions 
with original kcat values. P values were determined by two-tailed 
t-test, P ≤ 0.01.

Flux balance analysis. Flux balance analysis (FBA) has been used 
to make predictions of cellular growth rates based on a given 
metabolic network and environmental conditions7. However, 
other studies have noted the difficulty in quantitatively predict-
ing the short-term effects of gene deletion on cell growth using 
FBA16. To test the capacity of FBA to quantitatively predict phe-
notypes of single-gene disruption strains for the M. genitalium 
metabolic network, we analyzed phenotypes of single-gene  
disruption strains of the metabolic genes in the same data set 
using FBA. We found that these predictions fell into only two 
categories: either zero growth rate or growth rate essentially simi-
lar to that of the wild type (Supplementary Fig. 1a). In contrast, 
the whole-cell model predictions included specific growth rates 
across the range of 0–115% of the growth rate of the wild type 
(Supplementary Fig. 1b).

The distribution was more descriptive than FBA, even in the 
case where only metabolic genes were considered. This most 
likely stemmed from two causes: first, the variation near to the 
growth rate similar to that of the wild type arose predominantly 
from the stochastic aspects of the whole-cell model; and second,  

predicted specific growth rates more distant from that of the wild 
type were due to the substantial constraints on the whole-cell 
model’s metabolic network. Specifically, the metabolic module 
of the whole-cell model was solved using a similar linear opti-
mization strategy to FBA but with 63% of the catalysis reactions 
constrained by rate parameters as opposed to none of the catalysis 
reactions typically being constrained in FBA studies2,5. The tight, 
detailed constraints on almost every metabolic reaction in the 
whole-cell model arise from a combination of many cellular proc-
esses in the whole-cell framework including transcription, tRNA 
aminoacylation, translation, protein processing and modification, 
protein translocation and folding, and macromolecular compl-
exation. Previous studies have shown that the addition of new 
constraints to FBA improves predictive ability8, and our compari-
son underscores that such constraints may be essential to make 
accurate quantitative predictions about cellular growth rates.  
We conclude that the quantitative specific growth rates and 
hypotheses presented here required the use of the whole-cell 
model and would not have been achieved by FBA alone.

12. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).
13. Schelling, P., Folkers, G. & Scapozza, L. Anal. Biochem. 295, 82–87 

(2001).
14. Lester, L.M., Rusch, L.A., Robinson, G.J. & Speckhard, D.C. Biochemistry 

37, 5349–5355 (1998).
15. Leer, J.C., Hammer-Jespersen, K. & Schwartz, M. Eur. J. Biochem. 75, 

217–224 (1977).
16. Fong, S.S. & Palsson, B.O. Nat. Genet. 36, 1056–1058 (2004).
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