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Despite rapid advances over the last decade, synthetic biology lacks the predictive tools needed to

enable rational design. Unlike established engineering disciplines, the engineering of synthetic

gene circuits still relies heavily on experimental trial-and-error, a time-consuming and inefficient

process that slows down the biological design cycle. This reliance on experimental tuning is

because current modeling approaches are unable to make reliable predictions about the in vivo
behavior of synthetic circuits. A major reason for this lack of predictability is that current models

view circuits in isolation, ignoring the vast number of complex cellular processes that impinge on

the dynamics of the synthetic circuit and vice versa. To address this problem, we present a

modeling approach for the design of synthetic circuits in the context of cellular networks. Using

the recently published whole-cell model of Mycoplasma genitalium, we examined the effect of

adding genes into the host genome. We also investigated how codon usage correlates with gene

expression and find agreement with existing experimental results. Finally, we successfully

implemented a synthetic Goodwin oscillator in the whole-cell model. We provide an updated

software framework for the whole-cell model that lays the foundation for the integration of whole-

cell models with synthetic gene circuit models. This software framework is made freely available

to the community to enable future extensions. We envision that this approach will be critical to

transforming the field of synthetic biology into a rational and predictive engineering discipline.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811182]

Synthetic biology aims to engineer synthetic genetic cir-

cuits to endow cells and organisms with the ability to

address new applications, including the production of

drugs and industrial products, the design of new thera-

peutics for human diseases, and the study of basic biologi-

cal processes. Despite significant advances in the field

over the last decade, the synthetic biology design cycle

has been hampered by the lack of predictive models. In

contrast, more established engineering disciplines, such

as civil and electrical engineering can rely on rational

design by using models that can capture the behavior of

real-world systems with a high degree of accuracy. This

is currently not the case for synthetic biology, as models

are generally only able to make qualitative predictions

about system behavior. As a result, producing a func-

tional engineered biological system usually requires

extensive manual tuning by trial-and-error, a time-

consuming process that significantly slows the biological

design process. The lack of predictive power in current

models is partly because these models account for only

the synthetic circuits themselves, but not other ongoing

processes in the cells in which they reside. However, the

complex dynamics of synthetic circuits may affect the

host cell and vice versa, leading to divergence between

current models and experimental results. Recently, a

whole-cell model of a small and simple bacterium was

developed and shown to capture numerous aspects of this

organism’s behavior. Here, we adapt this model to enable

the easy incorporation of synthetic circuits and investi-

gate its use for design in synthetic biology. We show that

synthetic circuits can be integrated into the model and

demonstrate the effects that synthetic genes can have on

the host cell. We anticipate that this whole-cell modeling

approach for synthetic gene circuits will enable more pre-

dictive and rational design for the field of synthetic

biology.

I. INTRODUCTION

Synthetic biology promises to revolutionize many areas

of technology, including bio-manufacturing, therapeutics

and diagnostics.1,2 To meet this promise, synthetic biology

must become a rigorous engineering discipline based on

rational and predictive design.3–6 Modeling efforts within

synthetic biology have so far focused on synthetic compo-

nents and their interactions, where more detailed models

have tried to refine these descriptions.7 For example, Tigges

et al.8 considered how opposing RNA polymerases interact,

while Stricker et al.9 incorporated DNA looping into their
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model of transcriptional regulation. The increasing use of

stochastic models as a means of describing synthetic gene

circuits further intends to improve these network-level

descriptions.9–12

Interactions between the host cell and synthetic circuits

have been recognized since the observation that oscillations

in the repressilator stopped upon entry of the cell into sta-

tionary phase.10 More recently, interactions between the host

cell and synthetic circuits have been used to uncover novel

aspects of host physiology13 and population-level altru-

ism14,15 and to guide design. These interactions are also an

important consideration when porting circuits between

organisms.16 However, modeling could be further used to

accelerate synthetic biological design if it can account for

the critical role of the cellular host in a comprehensive and

systematic way, the state (e.g., mass, volume, energy status,

metabolite concentrations) of which governs the parameters

of the synthetic circuit. Consequently, biological circuit

design has primarily relied on ad hoc engineering, requiring

extensive experimental tuning, with post hoc modeling rather

than predictive models and systematic design rules.

Many synthetic circuits have been modeled in isolation

or only in the context of simplified host parameters due to

the lack of comprehensive host models. This is a highly sim-

plified approach for designing synthetic gene circuits that are

expected to function inside of living cells. However, this sit-

uation is beginning to change. Recently, Karr et al.17 devel-

oped the first “whole-cell” model of Mycoplasma
genitalium, which attempts to describe this organism in its

entirety. M. genitalium is an ideal candidate for a whole-cell

model because it has one of the smallest known genomes,

containing only 525 genes.17,18 The model comprises 28

sub-models of distinct cellular processes including transcrip-

tion, DNA repair, metabolism, and cell division. Each sub-

model is implemented using the most appropriate mathemat-

ical representation. For example, metabolism is modeled

using flux-balance analysis,19 whereas RNA degradation and

protein degradation are modeled as Poisson processes.17 The

model independently executes the sub-models for 1 s of real

time and integrates the inputs and outputs of the sub-models

at longer time-scales. In total, the whole cell model com-

prises 1423 chemical reactions and processes (e.g., formation

of protein complexes) and approximately 1800 parameters.

Each simulation starts at the beginning of the cell cycle and

continues until the in silico cell “divides.” The whole-cell

model captures the intracellular dynamics of M. genitalium
remarkably well; it predicts previously observed gene essen-

tiality with 79% accuracy and qualitatively agrees with

measured metabolite concentrations, reaction fluxes, and

RNA expression levels.17 Here, we adapted the whole-cell

model of M. genitalium to enable the straightforward inclu-

sion of artificial synthetic gene constructs into the in silico
simulation. This updated software framework is made freely

available to the community.

Towards a whole-cell modeling approach for synthetic

biology, we investigate a critically important question: How

do synthetic gene circuits affect the host cell? This question

is relevant not only to the synthetic biology community but

to the wider biological community because expression of

non-native genes and genetic engineering are ubiquitously

used throughout basic biological research, medicine, and bi-

ological engineering.

We used the M. genitalium whole-cell model to investi-

gate the interactions between synthetic gene circuits and

their hosts. First, we added lacI genes to the whole-cell

model to study the effects of synthetic genes on the host cell

and found a clear relationship between the number of genes

added and the length of the cell cycle. We found that a sub-

stantial portion of this effect was due to the increased time

required to replicate the DNA, and that another probable fac-

tor was the effect on the production of mRNAs from the

native genome. We then used the whole-cell model to exam-

ine the impact of codon usage on gene expression. Codon

optimization is a simple and commonly used approach to

attempt to increase protein expression. We chose to investi-

gate codon usage to test the predictive capacity of whole-cell

models. Consistent with experimental findings,20 the model

predicts little difference in the protein expression levels of

codon-optimized and non-optimized genes but captures

growth differences in the host cell. Finally, we implemented

a Goodwin oscillator in the whole-cell model. We found that

the oscillator displayed the characteristic noisy and irregular

dynamics of a Goodwin oscillator.

II. THE EFFECTS OF SYNTHETIC GENES ON THE
HOST CELL

We sought to investigate how synthetic circuits might

affect the dynamics and behavior of the host cells in which

they reside. Furthermore, we wanted to see how these effects

vary with circuit size. As a proxy for complex gene circuits,

we added varying numbers of lacI genes, with identical pro-

moters (promoters having the exact same DNA sequence), in

tandem. Terminator sequences (sequences that halt the pro-

cess of transcription and demarcate the “end” of the tran-

scriptional unit) were not included into the genome (see

Appendix for details). We used lacI as our model gene, as it

is extensively studied21 and a commonly used gene in the

implementation of synthetic gene networks.9,10,22,23 The

most compelling effect was on the length of the cell cycle.

Figure 1(a) (solid line) shows the relationship between the

number of lacI genes added (which correlates approximately

linearly with the relative fraction of LacI protein, see supple-

mentary information24 Figure 1) and the length of the cell

cycle. The length of the cell cycle increases quickly with the

addition of the first few genes and continues to increase up

to 100 added genes. We saw similar results for the genes

araC, tetR, and gfp (also well-understood genes which are

commonly used in synthetic biology10,25–27) (see supplemen-

tary information24 Figure 2) and similar relationships (both

quantitatively and qualitatively) between the number of

genes added and the relative fraction of the protein (see sup-

plementary information24 Figure 1). To ease comparison

between results for lacI and araC, tetR, and gfp, we artifi-

cially set all proteins to form tetramers (a complex of four

proteins) in all the studies reported here.

We then determined the contribution that the replication

of additional DNA made to the increased cell cycle time.
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This was done by preventing the lacI genes from being tran-

scribed in the model, thus eliminating the production of LacI

protein. Figure 1(a) (dashed line) shows the cell cycle time

when the lacI genes were non-expressed. The relationship

between the number of non-expressed lacI genes and the cell

cycle length is similar to that of expressed lacI—the cell

cycle length generally increases with the addition of non-

functional lacI. However, the magnitude of the increase is

not as great as with expressed lacI genes.

We also examined the effect on the extra expressed lacI
genes on the number of mRNAs produced from the native

genome. We found that as the number of expressed lacI
genes increased, the mean (per time point, averaged over the

length of the cell cycle) number of mRNAs produced from

the native genome decreased (Figure 1(b)). We saw a similar

relationship for araC, tetR, and gfp (see supplementary infor-

mation24 Figure 3).

III. THE EFFECTS OF CODON USAGE ON SYNTHETIC
GENE EXPRESSION

Codon optimization is a common method adopted in

attempts to increase gene expression for the purposes of

large-scale protein purification. From the perspective of syn-

thetic biology, codon optimization is a potential way of tun-

ing the dynamics of a synthetic gene network as well as the

burden it imposes on the cell. We used the whole-cell model

to investigate how codon optimization of four commonly

used genes in synthetic biology, lacI, araC, tetR, and gfp,

affects their expression. We used the JCat online codon

FIG. 1. Additional genes increase the length of the cell cycle. (a) The relationship between the number of additional expressed (solid line) and non-expressed

(dashed line) lacI genes and the cell cycle length is shown. Cell cycle length (hours) is plotted against the number of added genes, for 1, 5, 10, 20, 50, and 100

genes added. (b) The mean (per time point, averaged over the length of the cell cycle) number of mRNAs produced from the native genome is plotted against

the number of added expressed lacI genes for 1, 5, 10, 20, 50, and 100 genes added. 25 in silico cell simulations were performed for each circuit size. Bars indi-

cate the standard error of the mean.

FIG. 2. Codon usage minimally affects
synthetic gene expression. Black full

lines indicate the optimized gene; red

dotted lines indicate the unoptimized

gene. (a) lacI, (b). araC, (c) tetR, (d)

gfp. Thick lines indicate the average;

thin lines represent the standard error

of the mean. Results are truncated at

the length of the shortest cell cycle

length. In all cases, complexes denote

tetramers to ease comparisons between

experiments. Results are an average of

25 in silico simulations.
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optimization tool28 to re-encode the gene sequences for

expression in M. genitalium (see supplementary informa-

tion24 for sequences). Briefly, JCat calculates the Codon

Adaption Index (CAI) of the sequence for a particular orga-

nism; higher numbers are considered more optimal. Our re-

encoded lacI, araC, tetR, and gfp genes had CAI’s of 0.99,

0.96, 0.98, and 0.99, compared to 0.15, 0.18, 0.41, and 0.57

for the unoptimized sequences, respectively. Figure 2 shows

the expression profiles of the optimized and unoptimized

genes. In all cases, the protein expression profiles increase at

approximately the same rate. This is in agreement with

experimental observations in E. coli, where the CAI has no

correlation with gene expression level.20,29 However, experi-

mental data have confirmed that the growth rate of E. coli
correlates with the CAI; the higher the CAI, the faster the

growth.20 We examined the effect of the codon-optimized

versions of our genes on the length of the cell cycle (Figure

3). For lacI and araC (Figures 3(a) and 3(b), respectively),

which had differences in the CAI’s of the original and opti-

mized genes of 0.84 and 0.78, respectively, we found agree-

ment with the experimental observations. Optimized lacI
and araC had a lesser effect on the growth of the cell than

their unoptimized counterparts (mean difference across all

data points was 0.22 and 0.29 h, respectively). Conversely,

for tetR and gfp (Figures 3(b) and 3(c), respectively), which

had lower differences in their CAI’s (0.57 and 0.42, respec-

tively), the difference between the growth rates was approxi-

mately zero (mean difference across all data points was

�0.06 and �0.01 h, respectively).

We performed a statistical analysis of the data using

paired t-tests to compare the effects of the optimized and

unoptimized genes on cell cycle lengths. We carried out

1-tailed paired t-tests to test the hypothesis that the mean cell

cycle length with the unoptimized gene is greater than the

mean cell cycle length with the optimized gene. In the case

of lacI and araC, we found the cell cycle length with the

unoptimized gene to be significantly greater than the cell

cycle length with the optimized gene (p-values of 0.046 and

0.015, respectively). We found no significant difference in

the cases of tetR and gfp (p-values of 0.8 and 0.53, respec-

tively). Table I summarizes the results of the t-tests.

IV. GOODWIN OSCILLATOR DYNAMICS IN THE
WHOLE-CELL MODEL

We implemented a Goodwin oscillator9,30 in the context

of the M. genitalium whole-cell model. This was done to

demonstrate that a simple synthetic gene circuit could be

made to function in the whole-cell model. A Goodwin oscil-

lator is a simple genetic oscillator comprising a single gene

that represses its own expression. The Goodwin oscillator

was conceived 50 years ago30 but only recently implemented

as a gene network in E. coli.9 We used the lacI sequence that

is not optimized for M. genitalium to construct an in silico
Goodwin oscillator within the whole-cell model (Figure 4).

FIG. 3. Codon optimization of synthetic
genes differentially affects cell cycle
length. The mean cell cycle length is

plotted for M. genitalium with the

unoptimized gene (solid line), and the

codon-optimized gene (dashed line),

for 1, 5, 10, 20, 50, and 100 genes

added. (a) lacI, (b) araC, (c) tetR, (d)

gfp. 25 in silico cell simulations were

performed for each circuit size. Bars

indicate the standard error of the mean.

TABLE I. Summary of t-test p-values.

Comparison of optimized and unoptimized genes

gene p-value

lacI 0.046 (1-tailed)

araC 0.015 (1-tailed)

tetR 0.8 (1-tailed)

gfp 0.53 (1-tailed)
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Figure 5(a) shows the dynamics of the oscillator for two

representative in silico cell simulations (see supplementary

information24 Figure 4 for additional in silico cell simula-

tions). To ease comparisons between our simulations and ex-

perimental observations from E. coli9 (Figure 5(c)), Figure

5(b) shows the simulations from Figure 5(a) with a low-pass

filter applied. The simulations agree qualitatively with exper-

imental observations in E. coli;9 oscillations are irregular

and noisy.

V. DISCUSSION

In this study, we used a whole-cell model of M. genita-
lium to investigate several fundamental questions in syn-

thetic biology. Specifically, we presented a number of simple

examples to demonstrate the potential uses of whole-cell

models in synthetic biology and to study the effects of artifi-

cial gene circuits on their hosts.

We first investigated how the addition of genes into the

genome affected the dynamics of the cell. This is a proxy for

understanding how synthetic circuits, formed from externally

added genes, may influence host cell behavior. We found a

clear positive relationship between the number of genes added

and the length of the cell cycle which was consistent for all

four genes examined. Externally added genes commonly

affect the growth rate of the host20,32 although the magnitude

of the effect varies between organisms.33 The relationship

between the number of lacI genes added and the length of the

cell cycle was approximately linear. As the fraction of the

total cell protein comprised of LacI was approximately linear

with the number of lacI genes added, there is an approxi-

mately linear relationship between the fraction of total cell

protein comprising LacI and the cell cycle length. This linear

relationship is in agreement with results seen with the overex-

pression of genes in E. coli, where it has been observed that

growth rate corresponds approximately linearly with the frac-

tion of both b-galactosidase or an inactive form of the elonga-

tion factor TU.34

By performing the same analysis using non-expressed

lacI genes, we delineated the contribution to the additional

cell cycle time that was caused by the increased time

required to replicate the DNA containing the lacI genes.

Additional DNA replication time was found to account for

approximately half of the increased cell cycle time. We then
examined the effect of the additional genes on the level of

mRNAs produced from the native genome. It might be

expected that the additional genes sequester cellular proteins

and resources, slowing down cellular processes and therefore

growth. Reduced mRNA levels, due to reduced transcription,

would be a clear indication of this sequestration. We found

that for all genes, there was indeed a clear effect, with the

additional genes causing the number of mRNAs produced

from the native genome to decrease. This behavior indicates

that one of the effects of adding an increasing number of

expressed genes is to reduce the overall cellular resources

that can be dedicated to transcription of the native genes.

Other likely contributions to the observed growth effects

could be additional genes diverting limited nucleic acids and

amino acids from other DNA, RNA, and proteins in the cell.

This would lead to the lower production of metabolic

enzymes, RNA polymerase, and ribosomes, resulting in a

FIG. 4. Topology of the Goodwin oscillator. (a) LacI forms a tetramer. (b)

The Goodwin oscillator is formed by LacI repressing transcription from its

own promoter. Adapted from Ref. 31.

FIG. 5. Whole-cell Goodwin oscillator displays noisy and irregular oscilla-
tions. (a) LacI tetramer copy number dynamics in two in silico cells, trun-

cated to the length of the shortest cell cycle. (b) Simulations from (a) with a

low-pass filter applied (frequencies greater than 0.001 Hz were removed).

(c) Experimental in vivo data of the Goodwin oscillator, modified from

Stricker et al.9 [Reproduced with permission from J. Stricker et al., “A fast,

robust and tunable synthetic gene oscillator,” Nature 456, 516–U39 (2008).

Copyright 2008 Nature Publishing Group] Each line depicts oscillatory data

from a separate E. coli cell.
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lower growth rate.35–38 It should be noted that in our studies,

the expression of added genes was always on and thus, these

results do not capture the fact that in many complex syn-

thetic circuits, only a subset of the genes will be expressed at

any given time.

We then examined the effect of codon usage on the

expression profile of four genes commonly used in synthetic

biology: lacI, araC, tetR, and gfp. In agreement with experi-

mental results from E. coli (on codon usage in gfp),20 we

observed no difference in the rates of expression between

unoptimized and optimized versions of the genes, despite

substantial differences in their CAI’s. In further agreement

with the findings of Kudla et al.,20 we found that codon opti-

mization could have a positive effect on the growth rate. We

only observed this difference for lacI and araC, where there

was the greatest difference in the CAI values between the

unoptimized and optimized genes. We observed no differ-

ence in the growth rate of unoptimized and optimized tetR or

gfp, which had lower differences in CAI values. A gene with

a higher CAI will use codons that are translated by

aminoacylated-tRNAs that are more abundant within the

cell. In the model, translation is affected by the availability

of aminoacylated-tRNA. By using an added gene with a

higher CAI, the expression of the added gene is less likely to

use the less abundant aminoacylated-tRNA species, and

these are therefore less likely to becoming limiting for the

translation of genes in the native genome. As the expression

of the genes in the native genome is directly related to the

growth of the cell, an added gene with a higher CAI will

have less effect on growth. This proposed mechanism is a

theory, and further analysis is required to understand the

relationship between the changes in the level of optimization

and the corresponding growth effects. However, the relation-

ship may be non-linear, with smaller differences in optimiza-

tion causing negligible growth effects. If the observed

optimization effects can be verified experimentally in M.
genitalium, these findings would further demonstrate the pre-

dictive power of the whole-cell model. Finally, we described

the successful implementation of a Goodwin oscillator

within the whole-cell model and found that its behavior qual-

itatively matched the in vivo dynamics observed in E. coli.9

Integrating synthetic gene circuits within accurate

whole-cell models has the potential to enable more rapid and

reliable design of biological systems with less trial and error.

We believe that whole-cell models will ultimately aid syn-

thetic biologists in understanding and describing why syn-

thetic circuits do not behave in vivo as expected from the

predictions of isolated computational models.10,39 This, in

turn, should lead to models that can more accurately predict

and thus enable the rational design of synthetic circuits. We

intend this work to be taken as a preliminary investigation

into the use of whole-cell models within synthetic biology. A

caveat to the work presented here is that without comple-

mentary in vivo data, we cannot directly test the in silico pre-

dictions made with the whole-cell model. Nonetheless, given

the previous accuracy of this whole-cell model in Karr et al.
(e.g., its qualitative agreement with measured metabolite

concentrations, reaction fluxes, and RNA expression lev-

els)17 and the consistency of our findings with existing

experimental data, we hope that this effort may launch new

studies to compare experimental results with model predic-

tions using this approach. Such efforts will enable the further

optimization of whole-cell synthetic circuit models for more

rapid and accurate design.

VI. FUTURE OUTLOOK

There are many intriguing questions that a whole-cell

approach to modeling synthetic gene circuits could be used

to address. Ideally, any future investigations would be

closely accompanied with experimental work, with the aim

of comparing model predictions with experimental results

and improving the accuracy of this approach. M. genitalium
is not an ideal model organism; it is a small organism with a

long doubling time, has few known genetic tools, and no

known defined medium. However, Mycoplasma have been

successfully engineered in prior work—for instance, with

functioning GFP and TetR proteins40,41 and on a much larger

genome-wide scale in the recent work of Gibson et al.42

This study has focused on one side of the relationship

between a synthetic circuit and the host—the effect of the

synthetic circuit on the host. We have yet not examined the

other side of the relationship—the effect of host processes

on the behavior of the synthetic circuit. Ultimately, the

effects between the host and the synthetic circuit are inter-

twined and feed back on each other, and whole-cell models

have the potential to uncover details of these likely complex

relationships.

The whole-cell model necessarily makes numerous

assumptions and simplifications. A current limitation of the

whole-cell model for use in synthetic biology is the absence

of non-specific binding of transcription factors to DNA,

although the non-specific binding of other proteins, such as

RNA polymerase, is captured in the model. Though a tran-

scription factor may have a single specific binding site, it is

thought that transcription factors that are not bound specifi-

cally are likely to be bound non-specifically, elsewhere in

the genome.43,44 The remainder of the genome therefore acts

a sink for transcription factors and consequently has impor-

tant implications for the dynamics of gene circuits.43,44 For

synthetic biology, a useful extension to the whole-cell model

would therefore be the ability to define non-specific binding

for added transcription factors.

The use of whole-cell models for synthetic biology is in

its infancy, and thus advantages to using such models for bio-

logical engineering will need to be demonstrated with experi-

mental data. Nonetheless, whole-cell models are likely to

form the backbone of future modeling approaches in synthetic

biology and will help transform the field into a more predic-

tive engineering discipline. Within the workflow of the syn-

thetic biology design and construction process, we envisage

whole-cell models will serve as advanced biophysical models

that will exist in-between higher-level graphical design tools

such as Clotho45 and GenoCAD46 and the physical implemen-

tation of the circuit in the cell. The software advancements

made here allow for synthetic circuits to be easily integrated

into the whole-cell model, allowing users to programmatically

add and remove model components including genes,
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transcription units, protein monomers, complexes, reactions,

and regulatory interactions (see Appendix). Further improve-

ments of the model may incorporate transcriptional,47,48

RNA-based,49,50 and recombinase-based circuitry.51 We hope

this will encourage the application of the whole-cell modeling

approach to synthetic biology. Beyond synthetic biology, we

anticipate whole-cell models will be useful for interpreting

experiments and guiding biological discovery.
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APPENDIX: IMPLEMENTAION OF SYNTHETIC
CIRCUIT WHOLE-CELL MODELS

1. Whole-cell models

The Mycoplasma whole-cell model was implemented as

described previously.17 The knowledge base Application

Programming Interface (API) was improved to enable users

to programmatically add and remove model components in a

straightforward fashion, including genes, transcription units,

protein monomers, complexes, reactions, and regulatory

interactions. In addition, we created new a class called

SimulationRunner to encapsulate all of the model compo-

nents and parameter modifications required for specific simu-

lations and to separate these perturbations from the submodel

classes. Researchers can use the revised code to easily simu-

late perturbations including gene additions and deletions.

2. Synthetic circuit whole-cell models

The lacI knock-in model was implemented by adding a

single protein-coding gene to the MATLAB M. genitalium
whole-cell model.17 First, we appended the E. coli K-12

W3110 lacI (b0345) DNA sequence with start and stop co-

dons modified for M. genitalium as well as 100 immediate

upstream random nucleotides (which includes the promoter)

to the end of the M. genitalium chromosome at position

580077 (see supplementary information24 for sequences).

Second, we defined a new promoter with 6 nucleotide (nt)

�35 and �10 boxes at the �35 and �10 positions relative to

lacI. The lacI promoter RNA polymerase binding probability

was set equal to the 0.001 mean RNA polymerase mRNA

promoter binding probability, and the lacI mRNA half-life

was set equal to the 4.53 min mean mRNA half-life. The

half-lives of both the LacI monomers and tetrameric

complexes were set to 20 h (the default half-life for proteins

in the whole-cell model). The same procedure and parame-

ters were used for the genes araC, tetR and gfp.

The codon-optimized lacI knock-in model was imple-

mented similarly using the codon-optimized lacI sequence

calculated by JCat28 (see supplementary information24 for

sequence). The tandem repeat lacI knock-in model was also

implemented similarly by repeatedly appending the E. coli
lacI gene and immediate upstream region to the end of the

M. genitalium chromosome 20, 50, and 100 times. The same

procedure was used for the genes araC, tetR and gfp.

The Goodwin oscillator model was implemented by first

adding lacI to the whole-cell model as described above.

Next, we implemented LacI auto-repression by adding a

10 nt LacI tetramer DNA-binding site at the �40 position

relative to the lacI gene and setting the fold-change effect of

bound LacI to the lacI RNA polymerase recruitment rate to

10%. Finally, because the whole-cell model only simulates a

single �9 h cell cycle, oscillations were not observed when

using a 20 h half-life. We, therefore, decreased the half-lives

of the LacI protein monomers and complexes from 20 h to

24 min. A short half-life may be obtainable using ssrA tags,

commonly employed to increase protein degradation rates in

oscillators implemented in E. coli9,10 and which are also

present in Mycoplasma.52

The interested reader is referred to Data S1, Sec. 1.4 of

Karr et al.17 for further discussion of the whole-cell model

initial conditions.

3. Numerical simulations and data analysis

All simulations and data analysis were performed using

MATLAB 2012b. Each whole-cell simulation typically took

between 20–30 h, and 2 h, respectively. Statistical analysis

was carried out using MATLAB 2012b.

4. Availability

All of the simulation code and numerical results are

freely available open-source at SimTK (http://simtk.org/

home/wholecell).
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