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SUMMARY
Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This
limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We compre-
hensively list the best practices that biochemical modelers should follow to build reproducible biochemical
model artifacts—all data, model descriptions, and custom software used by the model—that can be under-
stood and reused. The best practices provide advice for all steps of a typical biochemical modeling workflow
in which a modeler collects data; constructs, trains, simulates, and validates the model; uses the predictions
of a model to advance knowledge; and publicly shares the model artifacts. The best practices emphasize the
benefits obtained by using standard tools and formats and provides guidance to modelers who do not or
cannot use standards in some stages of their modeling workflow. Adoption of these best practices will
enhance the ability of researchers to reproduce, understand, and reuse biochemical models.
INTRODUCTION

Recent recognition of the reproducibility obstacles in scientific

research has led to calls for improved practices that ensure

that published results can be reproduced by independent in-

vestigators (Mobley et al., 2013; Prinz et al., 2011; Golub

et al., 1999; De Schutter, 2010; Woelfle et al., 2011; Casade-

vall and Fang, 2010). Computational models of biochemical

system dynamics face the same criticism (Elofsson et al.,

2019; Sandve et al., 2013; Peng, 2011; Medley et al., 2016;

Waltemath and Wolkenhauer, 2016). Reproducible models

confer important benefits: they are easier to understand, trust,

modify, reuse, and compose. Thus, they facilitate collabora-

tion among biochemical modelers. A collection of reproduc-

ible models could be reused to construct multi-scale models

of larger, more complex systems. Achieving a dynamical,

biochemical model with these traits requires that (1) the

data, code, and decisions used to construct and simulate

models be recorded by the modeler, (2) models be described

in comprehensible languages, standard data formats, and

nomenclature, and (3) the artifact produced by modeling be

publicly shared and governed by open-source licenses

(Rosen, 2005). To make it easier to conduct reproducible

biochemical modeling, we and others are creating tools

(Choi et al., 2018; Somogyi et al., 2015; Smith et al., 2009;

Choi et al., 2016; Hucka et al., 2003; Hoops et al., 2006; Wal-

temath et al., 2011b; Olivier and Snoep, 2004; Watanabe

et al., 2019) that simplify these activities. As a practical guide

for the computational biochemical modeling community, this
article lists nine of the most important best practices that re-

searchers can use to make their models more reproducible.

We offer modelers these best practices as a guide for con-

ducting reproducible modeling. We structure the best practices

as advice for each stage of a typical biochemical modeling work-

flow: collect and aggregate data; construct a model, identify and

estimate its parameters, define initial conditions and simulate the

model, analyze the simulation results, validate the model, docu-

ment all of the model artifacts, build a package that contains the

artifacts and their documentation, and share the package while

publishing the findings of the study (see Figure 1). This structure

makes it easy to selectively implement a subset of the best

practices.

An initiative with consistent goals developed the findability,

accessibility, interoperability, and reusability (FAIR) principles

(Wilkinson et al., 2016), which set forth goals and desiderata

for goodmanagement and stewardship of scholarly data. To bet-

ter support knowledge discovery and innovation, the FAIR prin-

ciples urge all scholars who create digital data to ensure that it is

findable, accessible, interoperable, and reusable. The best prac-

tices we present consistently support the FAIR principles, as

enumerated in Table 1. In addition, our goals for achieving repro-

ducible biochemical models focus more on creating reusable

model artifacts, and our detailed practices provide specific

guidelines that go beyond the scope of the FAIR principles.

We organize the best practices into two parallel sets of recom-

mendations. The first provides guidance to biochemical modelers

whoemploya ‘‘standards-basedapproach,’’whichuses tools and

data formats that were designed for biochemical modeling and
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Figure 1. Practical Recommendations of Tools for Reproducible Modeling across All Stages of the Typical Biochemical Modeling Workflow
(A) A typical workflow that creates and uses a dynamical model: in ‘‘aggregate data,’’ a modeler collects data from papers, public data sources and/or private
experiments; in ‘‘construct model,’’ they use the data, their biological knowledge, assumptions, and modeling methods to create a model; in ‘‘estimate parameters,’’
themodeler producesa complete and self-consistent set of input parameters from thedata; in ‘‘simulatemodel,’’ themodeler integrates themodel over time; in ‘‘store
and analyze results,’’ they store simulation results and analyze them; in ‘‘verify & validate model,’’ the modeler ensures that the model and its predictions are

(legend continued on next page)
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have been adopted as community standards. The second advises

modelers who use a ‘‘general-purpose approach’’ that employs

computer languages, tools, and data formats that were designed

to be used by many fields. While modelers who employ the gen-

eral-purpose approach can make reproducible models, the stan-

dards-based tools and data formats expedite the construction of

reproducible models. By facilitating the exchange of model arti-

facts between platforms for construction, simulation, analysis,

and validation, and employing consistent ontology and minimum

information standards, standards-basedmodelingmakes it easier

for other researchers to understand and reuse these models.

Therefore, we recommend that the standards-based approach

be followed whenever possible. However, modelers constructing

models that require functionality that is not supported by the exist-

ing standards-based tools (Karr et al., 2012; Goldberg et al. 2018)

will find the general-purpose approach to be more practical for

some stages of the workflow.

Typical biochemical modeling workflow (A) and tools for

achieving best practices for making reproducible biochemical

models (B). Full caption on the following page.

BEST PRACTICES FOR MAKING REPRODUCIBLE
BIOCHEMICAL MODELS

Best Practice 1: When Aggregating and Curating Data,
Retain Its Metadata and Provenance
Most biochemical models require inputs gathered by data aggre-

gation or the collection of data frommultiple experiments, scienti-

fic papers, and online data sources. Appendix A of Goldberg et al.

(Goldberg et al., 2018) provides an extensive list of data sources

that store intracellular biochemical data. If experiments are con-

ducted to obtain new data or inform conditions studied by the

model, use reproducible experimental methods. We encourage

experimentalists touseappropriateontologiesandminimum infor-

mation standards when recording experimental methods, condi-

tions, and the historical record of the data (Bandrowski et al.,

2016; Kazic, 2015; Orchard et al., 2007; Deutsch et al., 2008; Bus-

tin et al., 2009; Brazma et al., 2001; Taylor et al., 2007). Provide

thorough descriptions of statistical analyses and estimated uncer-

tainties in measurements that are due to instrument accuracy and

other sources of noise (White, 2008; Mi�skovic and Hatzimanikatis,

2011). Data curation standardizes, normalizes, and links together

the aggregated data to facilitate its use in models and manages

its metadata (Goldberg et al., 2018). Metadata are data that

describe data, in this case, data used by biochemical models

(Deelman et al., 2010). Metadata about a measurement should

include its units, estimates of its accuracy, annotations, and the

identities of the ontologies that define the annotations. This will

provide information that a modeler can use to evaluate whether

data are suitable for their model. Data provenance is metadata

that describes the historical record of data and should include
consistent with experimental data; in ‘‘document artifacts,’’ the modeler annotates
from each stage; in ‘‘package artifacts and documentation,’’ they combine all mode
and disseminate,’’ the modeler publishes their novel scientific findings and shares
researchers can access to reproduce, understand, and reuse the model. Black arr
(B) Software tools and data formats for reproducible modeling: Tools and data
workflow in (A). These tools and data formats are split into recommendations for st
the text. Tools that are useful in multiple modeling stages are listed in those stag
A table with links to the tools shown in Figure 1 is included in the Supplemental
the lab that generated the data, the conditions under which it

wasobtained, theprotocol used tomake it, thepaper that reported

the measurement, and the online data source from which it was

aggregated (Deelman et al., 2010). Provenance records should

alsodescribe transformations of the data following their collection.

Follow the scientific evidenceandprovenance informationOntolo-

gySEPIO to provide rich, computable representations of the evi-

dence and provenance behind scientific assertions (Brush et

al., 2016).

A limited set of existing tools can track the versions, metadata,

and provenance of aggregated data. For example, Quilt provides

version control features for data, and PROV (Moreau et al., 2015)

is an extensive data model for tracking the provenance of online

data, such as data sources. Over fifty tools have implemented

parts of PROV (Huynh et al., 2013). When aggregating data,

modelers should automate the processes that retain its meta-

data and provenance. If existing tools cannot perform the auto-

mation, then custom tools must be developed.

Best Practice 2: Record theModel ConstructionProcess
Construction (of a model) encodes the structure and dynamics of

thebiological systembeingmodeled: its geometry;molecular spe-

cies that participate in the system, the reactions that transform

them, and the rate laws for these reactions, initial conditions, and

parameters used by these model components. Other biological

or biochemical features may also be represented. Document the

construction process to ensure that the justification for design de-

cisions, which are not explicitly encoded in the logic or mathe-

matics of the model, is communicated to independent re-

searchers. This includes simplifications and assumptions about

the system and environmental context and decisions about which

measurements to use.

Many of the artifacts created during model construction will

change as the data and models are improved and altered. We

recommend that modelers use version control systems to track

changes in their data and code. This would support concurrent

development by teams of modelers and help avoid unnecessary

duplication of artifacts. Version control system tools include sub-

version (SVN) and Git. For cloud-based storage of SVN and Git

repositories that support version control, use GitHub (Brindescu

et al., 2014).

Standards-Based

Follow the minimal information required in the annotation of

biochemical models (MIRIAM) standard to ensure that all model

components are explained (Laibe and Le Novère, 2007). Use the

systems biology graphical notation (SBGN) (Laibe and Le No-

vère, 2007) to visualize the model to help independent groups

understand its components and interactions.

General-Purpose

Record all the data and software used to construct the model

and document the construction process. Help independent
and provides human-readable descriptions (tan rectangles) for all model artifacts
l artifacts and documentation into archive(s) to be shared publicly, and in ‘‘publish
the archive(s) by depositing them in open-source repositories that independent
ows indicate the transitions between workflow stages.
formats that enhance reproducibility are listed in a diagram that parallels the
andards-based and general-purpose approaches tomodeling, as presented in
es.
Information (see Table S1).’’
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Table 1. Best Practices for Reproducibly Building and Simulating Biochemical Models Alignedwith theModelingWorkflow Stages and

the FAIR Principles They Implement

Workflow Stage Best Practices for Reproducible Biochemical Modeling FAIR ID

Aggregate data Best Practice 1: When aggregating and curating data, retain its

metadata and provenance

F1–F4, A1 and A2, I1–I3, R1

Construct model Best Practice 2: Record the model construction process

Best Practice 3: Make model descriptions comprehensible by

using structured formats and unambiguous names

F2, I1–I3, R1

F1, F4, A1, I1-I2, R1.3

Estimate parameters Best Practice 4: If parameters are estimated, share the estimation

algorithm and perform uncertainty quantification

A1

Simulate model Best Practice 5: Record all simulation inputs and methods,

including initial conditions, numerical integration algorithms,

random number generator algorithms, and seed values

F2 and F3, A1, I1–I3

Store & analyze results Best Practice 6: Save structured unprocessed simulation result

sand share the data presented in graphs and tables

A1, I1

Verify & validate model Best Practice 7: Automate and document model verification and

validation

A1, I1, R1.3

Package artifacts & documentation Best Practice 8: Confirm that model predictions can be

reproduced in an independent computing environment

A1, I1 and I2, R1.3

Publish & disseminate Best Practice 9: Create packages that contain all model artifacts

and documentation, and deposit them in public, version-

controlled repositories

F1–F4, A1 and A2, I1–I3, R1

FAIR principle (Wilkinson et al., 2016) identifiers, which are most relevant to each best practice, are included to connect the practical concepts

described in this article with policies adopted by the broader research community.
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investigators understand the model by noting all assumptions

and decisions made during construction, with comments in

source code or as supplementary documentation for each arti-

fact. When developing figures to visualize the model compo-

nents and interactions, provide a detailed legend. Follow existing

conventions for interaction maps when possible—for example,

use standard arrowheads to represent mass transfer or acti-

vating interactions between biochemical species, and blunt-

end arrowheads to represent repression.

Best Practice 3: Make Model Descriptions
Comprehensible by Using Structured Formats and
Unambiguous Names
Models described in structured formats, which precisely identify

model components, are easier to understand. All model compo-

nents, such as a model geometry, species, and reactions, should

be identified by an unambiguous name or annotation with a

distinct semantic meaning. We also urge modelers to unambigu-

ously describe the system context, that is, the biological entity be-

ing modeled, including its species, tissue, cell type or strain, and

genotype. Also, describe the environmental context, such as the

temperature, pressure, and external nutrients in the environment

surrounding the biological entity. The physical units of all quanti-

ties represented in the model should be documented and propa-

gated as quantities are transformed. Software packages that sup-

port units are available in multiple languages, including R and

Python (Pebesma et al., 2016; Grecco and Thielen, 2020).

Standards-Based

To facilitate design and comprehension of their models, mod-

elers should use standard systems biology formats formodel de-

scriptions, such as the systems biology markup language

(SBML) (Hucka et al., 2003) and CellML (Cuellar et al., 2003).

Antimony is a modular, text-based language that can describe
112 Cell Systems 11, August 26, 2020
amodel in simple statements and export models to SBML (Smith

et al., 2009). BioPAX is a modeling language that represents bio-

logical pathways and can export them to SBML or CellML (Demir

et al., 2010). BioNetGen (Harris et al., 2016) and PySB (Lopez

et al., 2013) enable rule-based models and can also export

them to SBML. SBtab (Lubitz et al., 2016) and ObjTables (Karr

et al., 2020) provide a set of standardized syntax rules and con-

ventions for table-based data formats, to help modelers struc-

ture experimental measurements and enable automated data

integration and model building.

Use the systems biology ontology (SBO) (Courtot et al., 2011)

to precisely record and categorize the semantics of model com-

ponents, including assumptions, the types of rate laws, and the

roles of species in reactions and rate laws. The structures of

small molecules can be described using the International Union

of Pure and Applied Chemistry (IUPAC) International Chemical

Identifiers (InChI) (Heller et al., 2015). BpForms and BcForms

can precisely describe the structures of and modifications to

bio-polymers and complexes (Lang et al., 2020).

General-Purpose

Models can be described using general-purpose programing lan-

guages. Document the code thoroughly with comments that

describe the structure of all model components. If possible,

describe the components of models as data rather than in

code. For example, the types of molecules in a model could be

described in a computer-readable table that contains a column

for each molecular attribute. Many other model components

can be described in similar tables. Storing components in spread-

sheets or delimited files and annotating themeaning of all compo-

nents and fields will help independent investigators comprehend

the model. Standard identifiers for biological and chemical spe-

cies identified in the standards-based section above can be

used to name model entities in the general-purpose approach.
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Avoid publishing a model as a system of ordinary differential

equations alone, because converting a reaction network to this

representation usually loses information, which obfuscates the

underlying biochemistry. Instead, publish both the ordinary dif-

ferential equations and a description of the model as a set of re-

actions and provide a computer-readable representation when-

ever possible.

Best Practice 4: If Parameters Are Estimated, Share the
Estimation Algorithm and Perform Uncertainty
Quantification
Unfortunately, aggregated measurements often fail to provide

a complete, self-consistent set of parameters for a biochem-

ical model. Therefore, parameter estimation is typically

needed to infer the values of missing or inconsistent parame-

ters. Parameter estimation solves for parameter values that

minimize the divergence between experimental measure-

ments of the system being modeled and the predictions of

the model for that data. For non-identifiable models, common

when representing biological systems, there are multiple sets

of parameters that can minimize this divergence. In these

cases, families of estimated parameters should be reported

in machine-readable formats, to adequately capture their cor-

relation structure. Many parameter estimation algorithms use

well-established optimization methods and allow the user to

tune inputs for effective estimation (Ashyraliyev et al., 2009).

Use reusable programs instead of manually tuning parameter

values.

Recognizing that biochemical measurements are imprecise

and many biochemical properties, such as species concentra-

tions, vary naturally; uncertainty quantification estimates the

distributions of model input parameters and then propagates

these distributions through model simulations to quantify their

impacts on model predictions. When possible, initialize simula-

tions by sampling inputs from their estimated distributions and

execute multiple simulations to estimate the distributions of

predictions. Algorithms and codes for parameter estimation

and uncertainty quantification should be included in shared ar-

tifacts.

Standards-Based

Use a reusable program, such as COPASI (Hoops et al., 2006),

SBML-PET (Zi and Klipp, 2006), or PyBioNetFit (Mitra et al.,

2019), to perform parameter estimation on SBML models. CO-

PASI accomplishes this byminimizing the least squares error be-

tween time course measurements and predictions of the model

or by performing profile likelihood estimation (Hoops et al.,

2006). SBML-PET estimates parameters for diverse types of

experimental measurements (Zi and Klipp, 2006). PyBioNetFit

provides both parameterization and uncertainty quantification

protocols (Mitra et al., 2019).

General-Purpose

State the parameter estimation algorithm and all input values

used to tune the protocol. If a custom algorithm is created, pro-

vide its code and documentation. Potential tools include Data2-

Dynamics (Raue et al., 2015), PyDREAM (Shockley et al., 2018),

and the optimization library provided by SciPy (Jones et al.,

2001). Data2Dynamics is a MATLAB toolbox that addresses

parameter estimation challenges (Raue et al., 2015). In Python,

PyDREAM (Shockley et al., 2018) performs parameter estimation
and uncertainty quantification for biochemical models and the

SciPy (Jones et al., 2001) optimization package provides many

gradient-based and global optimization approaches.

Best Practice 5: Record All Simulation Inputs and
Methods, Including Initial Conditions, Numerical
Integration Algorithms, Random Number Generator
Algorithms, and Seed Values
Simulation (of a model) involves computational execution of the

mathematics describing a model to generate predictions of its

dynamic behavior. We urge modelers to implement numerical

methods—such as a custom integration method—separately

from representations of biological systems, so that each of

them can be independently reused. When performing stochastic

simulations that use a pseudo-random number generator algo-

rithm, preserve a precise definition of the algorithm. Execute

an ensemble of simulation runs with different seeds to estimate

the distributions of species population trajectories and predic-

tions that depend on them. Make the ensembles large enough

to accurately characterize properties of the distributions. Record

the seeds used by these simulations or a reproducible method

for obtaining the seeds. If multiple distinct sets of input parame-

ters are analyzed, repeat the process of estimating the distribu-

tion of predictions for each parameter set.

Standards-Based

Follow the minimum information about & simulation experiment

(MIASE) guidelines to determine which software and data to

archive (Waltemath et al., 2011a). The simulation experiment

description markup language (SED-ML) can encode simulation

descriptions, including simulator settings and parameter modifi-

cations, and facilitate exchange between standard-compatible

tools (Waltemath and Le Novère, 2013). We recommend using

the kinetic simulation algorithm ontology (KiSAO) (Courtot

et al., 2011) to annotate SED-ML documents. Many simulators

are compatible with these standards, including COPASI and

Java web simulation online (JWS Online), an online platform

that hosts models, simulation programs, and data (Olivier and

Snoep, 2004). libRoadRunner provides high-performance simu-

lation of multiple numerical integration algorithms (Somogyi

et al., 2015), and Tellurium provides a Pythonic interface to ac-

cess libRoadRunner, SED-ML, and additional analysis capabil-

ities (Choi et al., 2018). OpenCOR is a modeling environment,

which can be used to simulate models described using CellML

(Garny and Hunter, 2015). Alternatively, with simulation experi-

ment specification via & scala layer (SESSL) modelers can

specify simulation experiments in a domain-specific language,

import SBMLmodel descriptions, and write additional specifica-

tions in Scala (Ewald and Uhrmacher, 2014).

General-Purpose

To ensure that published results can be regenerated, archive all

software and data used to produce simulation results that may

be used or referenced in publications. Follow the generic MIASE

(Waltemath et al. (2011a)) guidelines regarding documentation of

model descriptions, simulators, and simulation experiments.

A simulation experiment simulates one or more models. It in-

puts initial conditions and parameters, and, optionally, perturba-

tions. Perturbations can modify parts of the model or its param-

eters. Amodeler canmake a simulation experiment reproducible

without archiving multiple executables by writing a small
Cell Systems 11, August 26, 2020 113
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program, often called a ‘‘script,’’ that executes all simulations. If

the simulator has an application programming interface (API),

then a script that uses the API can be written to run all simulation

experiments. Strive to store the initial conditions and parameters

used by the script in data files that can be easily understood by

independent investigators. Variations on this approach should

be devised if multiple simulators are required, if some simulators

do not have APIs, or if the simulators depend on incompatible

computing environments. For example, if a simulator does not

have an API, then script could be written to output a sequence

of commands in another script that executes the simulation ex-

periments that use the simulator.

Best Practice 6: Save Structured Unprocessed
Simulation Results and Share the Data Presented in
Graphs and Tables
To allow independent researchers to analyze published simula-

tion results and perform new analyses and mathematical manip-

ulations of the results without requiring that they reproduce the

entire model, unprocessed results should be preserved for

dissemination. Unprocessed results of simulations that might

be used in published findings should be temporarily saved; re-

sults that are used in published findings should be archived so

they can be shared with independent investigators.

Share the reduced data that are presented in published graphs

and tables to enable independent analyses by other investiga-

tors. If these data are not shared, researchers must devote sub-

stantial effort to transcribe data from figures. Results and data

should be stored in structured and space-efficient formats with

annotations that clearly describe the data. Unlike traditional fig-

ures, interactive graphics provide access to the data presented

by mouse over. However, to comprehensively share plotted

data, archive formatted files containing the raw data, the

graphics files, the code that generated the graphics, and docu-

mentation that relates the data to the figures. Providing the

source data and the code used to generate the published figures

ensures that the figure can be readily regenerated by indepen-

dent researchers or altered to improve understanding of the

data (EMBOpress, 2019).

Standards-Based

While standardized formats, such as the systems biology results

markup language (SBRML) (Dada et al., 2010), have been devel-

oped for simulation results, they have not been widely adopted,

leaving opportunities to develop additional standards. The SEEK

platform helps address the challenges of managing model data

by providing a suite of standards-compliant tools that link data

with relevant metadata, facilitate exchange with independent

modelers, and enable web-based simulation and plotting of

experimental data stored on the platform (Wolstencroft et al.,

2015). JWS Online directly links simulation predictions to online

plots that display them and allowsmodelers to execute real-time

web-based simulation of stored models to visualize interactive

output (Olivier and Snoep, 2004).

General-Purpose

Annotate the semantic meaning and provenance of all simulation

results. Save results in computer-readable formats, such as

comma-separated values (CSV) or tab-separated values (TSV).

The hierarchical data format (HDF) offers structured and efficient

data storage that is especially useful for large datasets (Brown
114 Cell Systems 11, August 26, 2020
et al., 1993), and RightField provides semantic data annotation

features in excel spreadsheets (Wolstencroft et al., 2011). Export

interactive graphics using MATLAB figures or web-based frame-

works, such as Vega and D3.

Best Practice 7: Automate and Document Model
Verification and Validation
Verification (of a model and its tools) and validation (of a model)

are concernedwith whether amodel, its tools, and its predictions

are consistent with experimental data (Sargent, 2010). We

recommend that modelers automate verification and validation

as much as possible. Employ workflows, shell scripts, and

similar techniques to automate processes that involve repeated

execution of programs with different inputs. Document the veri-

fication and validation processes, especially the steps that are

not automated, such as decisions made and conclusions

reached during verification and validation. Record the algo-

rithms, code, and data used.

Models that use stochastic simulations must employ stochas-

tic validation methods, which statistically compare the distribu-

tions of model predictions with the distributions of measure-

ments of the biological system phenotypes.

Standards-Based

Memote validates static properties of metabolic flux-balance

constraint models and complies with SBML (Lieven et al., 2018).

SBML2Prism can be used to make SBML models compatible

with the PRISM model checker, which provides probabilistic

model checking utilities that automate quantitative performance

analyses in stochastic biochemical models (Kwiatkowska et al.,

2011). BioLab uses statistical model checking to verify that rule-

based biochemical models programed in the BioNetGen lan-

guage exhibit expected temporal properties (Clarke et al., 2008).

General-Purpose

Models written in general-purpose programing languages

should be designed, built, and verified using software engineer-

ing techniques, such as object-oriented programing, modularity,

unit testing, and regression testing. Continuous integration ser-

vices, such as CircleCI and Travis, automate regression testing.

Evaluate whether simulation functions and the computational

model have been correctly designed and implemented. Defining

invariants and ensuring that they are satisfied can help verify

modeling tools (Gries, 2012). For example, ensuring that chemi-

cal reactions conserve of mass and that species populations are

non-negative can detect subtle errors.

SciUnit is a framework for test-driven model validation (Omar

et al., 2014). Modelers write a set of scientific unit tests that

compare the predictions of the model with measured pheno-

types of the system being modeled, and SciUnit runs the tests.

We recommend SciUnit for validating general-purpose and stan-

dards-based models. NuSMV (Cimatti et al., 2002) and LoLA

(Schmidt, 2000) may be used for formal model checking.

Best Practice 8: Confirm That Model Predictions Can Be
Reproduced in an Independent Computing Environment
Because modeling tools, models, and computing environments

are all complex software, it can be difficult to re-execute a simu-

lation experiment in a computing environment that differs from

the original environment used to execute the experiment. To in-

crease the likelihood that independent researchers can replicate
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a simulation experiment in a different environment, we recom-

mend thatmodelers replicate their own experiments in a different

environment before disseminating the artifacts. Some journals

now test the functionality of submitted models and may award

badges to manuscript that attach data, source code and model

artifacts, or attach artifacts that pass reproducibility tests per-

formed by the journal (Donoho, 2010; Kidwell et al., 2016;

AJPS, 2016). The Center for Open Science has compiled a list

of journals that provide badges for sharing data and other mate-

rials (COS, 2019).

Traditionally, a programmer prepares to execute complex

software in their computing environment by installing the soft-

ware upon which the complex software depends. We strongly

advise modelers to automate this software installation process

and test it and their simulation experiments in popular computing

environments. Given the challenges of this approach, we sug-

gest that modelers build and disseminate a container or virtual

machine, which contains all of the software and data required

by their model and simulation experiments. Independent re-

searchers can deploy the container or virtual machine to repli-

cate the simulation experiments it contains. Popular types of

containers include Docker, Amazon machine image and singu-

larity, while common virtual machines include VMware, Parallels,

and VirtualBox. In addition, cloud services, such as the Amazon

elastic compute cloud, can be rented to test themodeling exper-

iments deployed in a container or virtual machine.

Best Practice 9: Create Packages that Contain All Model
Artifacts and Documentations, and Deposit them in
Public, Version-Controlled Repositories
We recommend that all model artifacts be publicly shared to

ensure that they are findable, accessible, and reusable, as

emphasized by the FAIR (Wilkinson et al., 2016) principles. A

summary of the aims, design, assumptions, limitations, and

structure of the model will help independent investigators find,

understand, and reuse it. The relationships between model arti-

facts should be clearly described so that others can follow the

dependencies within the data, model, code, predictions, and

findings.

When possible, minimize barriers to accessibility. We recom-

mend that the packages of artifacts be governed by an open-

source license (Rosen, 2005) and deposited in public, version-

controlled repositories. GitHub, Bitbucket, and Zenodo are pop-

ular repositories, which use version control and are easily ac-

cessed by the scientific community. Ideally, the packages would

be shared by publishing a URL or DOI reference to them. Mod-

elers who use version-controlled repositories should label and

record public releases by tagging the release versions. Share

findings on preprint servers, such as bioRxiv (Sever et al.,

2019), and publish in peer-reviewed, open-access journals.

The Physiome Project has developed an open-access journal

created for the explicit purpose of publishing reproducible

models of biological systems (Hunter and Borg, 2003).

Standards-Based

The computational modeling in biology network (COMBINE)

developed the open modeling exchange format (OMEX), which

enables modelers to store all project data required for model

comprehension, construction, and simulation in a single zip

archive (Bergmann et al., 2014). Deposit the archive in a
modeling repository, such as the BioModels Database (Li

et al., 2010) or the FAIRDOMHub (Wolstencroft et al., 2017).

JWS Online also provides an integrated and standards-

compliant storage and simulation platform that stores model

components with their assumptions, parameter values, simula-

tion results, and raw data. Independent investigators can

execute simulations of shared models on the JWS Online plat-

form and download model artifacts.

General-Purpose

We urge modelers following a general-purpose approach to

structure input data, model definitions, and other artifacts by

creating directories that group the artifacts within an archive

containing the complete modeling project. Provide thorough

documentation for the contents of the archive, including a man-

ifest that lists all files, a metadata file that describes the contents

of the archive, and documents on how to execute the simulations

and investigate themodel. Upload archived artifacts to open-ac-

cess repositories for scientific research, such as FigShare,

SimTK, or Zenodo (Singh 2011; Sherman et al., 2005; Sicilia

et al., 2017).

DISCUSSION

A Practical Guide to Reproducible Biochemical
Modeling
Building reproducible biochemical models is essential; repro-

duction of results by independent investigators is a tenet of sci-

ence. Therefore, we have comprehensively enumerated the

best practices that researchers who build dynamical models

of biochemical systems should follow to make their modeling

workflows and their models reproducible. We urge modelers

to systemize and automate their model construction processes

and to record all data and software used by a workflow. When

modelers publish models and findings, we encourage them to

publicly share digital archives of their organized and docu-

mented artifacts, so that other researchers can reproduce their

workflow and findings. These nine best practices can be easily

integrated into a modeling workflow, because best practices

are provided for each workflow stage, and useful software tools

and data formats are recommended for each best practice (see

Figure 1).

To see an example of many of these best practices at work in a

single modeling workflow, we point readers to the executable

simulation model (EXSIMO), recently published as a preprint in

bioRxiv (König, 2020). This is an exemplary case study, which

applies many of the concepts discussed in this text, to create

a reproducible model of the liver, and can serve as a practical

guide. For example, the EXSIMO platform encodes an execut-

able simulationmodel of the liver using the SBMLmodel descrip-

tion format and makes the simulation experiments compatible

with SED-ML. While these steps alone would enable exchange-

ability across model construction and simulation platforms that

support the standards, the EXSIMO platform also provides the

entire simulation environment within a Docker image, allowing

all validation tests and analyses to be executed within a

container when run by an independent researcher. This step en-

sures that model and its simulation studies can be readily distrib-

uted. Finally, the EXSIMO platform provides extensive unit

testing to verify and validate the model, and through GitHub
Cell Systems 11, August 26, 2020 115
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releases, is version controlled. Through these techniques, which

are rigorously employed by the computer science community,

the EXSIMO platform achieves a high level of quality control

that will greatly benefit researchers interested in adapting this

model or studying its predictions.

Levels to Reproducible Biochemical Modeling
Following all best practices is an aspirational goal; this may

become routine as the field grows and the importance of repro-

ducible modeling becomes a more tangible concern, but adopt-

ing these guidelines is not an all-or-nothing challenge. Some of

the recommended best practices may require additional training

and effort to adopt new tools, and modelers may be concerned

that this will distract from the scientific endeavor. There are costs

associated with this transition. However, even adding just a few

of these practices to a modeling project could provide notable

benefits to reproducibility and enable long-term accessibility

by the greater scientific community. We hope that modelers

will consider these benefits and implement the best practices

when possible. To further facilitate this goal, we have developed

checklists that modelers may use to track their reproducibility

progress as they execute a modeling workflow, encouraging

them to work toward reproducibility (see Supplemental Informa-

tion for checklists). These checklists are presented as levels of

reproducible modeling, such that modelers can work toward

an idealized modeling workflow, which most dramatically im-

proves the ease of reproduction. We envision a future of

biochemical modeling in which models undergo versioning and

are iterated over, similar to semantic versioning, which is prac-

ticed within the software development community. In this way,

models can be updated to facilitate reproducibility, and improve

biological relevance and utility, but access to earlier versions can

still be maintained to keep a complete provenance record for

models derived from these versions. Using the provided check-

lists, a modeler could produce the first version of their model

following easy-to-adopt reproducibility practices (see the gen-

eral-purpose reproducible biochemical modeling checklist in

the Supplemental Information). Over time, more rigorous

changes could be implemented, adopting standardized formats

whenever applicable to gradually move toward an idealized

workflow (see the standards-based reproducible biochemical

modeling checklist in the Supplemental Information). We

encourage modelers to steadily improve the reproducibility of

their models and modeling workflow.

Standards in Biochemical Modeling: Progress and
Limitations
We encourage modelers to employ standard data formats and

tools that use these formats when possible because doing so

greatly reduces the effort required to make reproducible models.

As evidenced by the many standards and tools discussed in this

paper, our field has made great strides toward automating and

simplifying reproducible biochemical modeling in the last two

decades. To evaluate this progress, we have collected data on

the impact and adoption rates for the recommended scientific

standards and tools (Table 2). All but one of these tools and stan-

dards were developed in the last two decades. Two types of

evaluation data are provided, annual citation rates and adoption

rates reported by a survey of the biochemical modeling commu-
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nity (Szigeti et al., 2018a). The most influential and widely adop-

ted biochemical modeling tools and standards include SBML,

COPASI, SBGN, COBRApy, BioPAX, BioModels, Pathway

Tools, InChI, BioNetGen, and SED-ML. A couple of tools and

standards, notably SciPy and FAIR, score highly, because they

are used broadly by science beyond biochemical modeling.

Many other tools and standard have begun to develop a

following and may become the leading approach in their do-

mains in the future.

Nevertheless, some aspects of biochemical modeling still lack

good standards or tools for reproducibility. For example, no

standards or tools are available for aggregating and curating

data, and the standardized methods available for saving simula-

tion results lack important functionality. Because some models

cannot be built using only a standards-based approach, we offer

general-purpose approach recommendations for reproducible

biochemical modeling that provide conceptual and practical

guidance when standards-based tools are insufficient.

We have identified three core limitations to our standards-

based guidance—limited domain coverage, limited functionality,

and limited compatibility. Many of the recommended tools pro-

vided in these best practices (e.g., SBML, SED-ML, and CO-

PASI) only support modeling of biochemical dynamics, limiting

the domain coverage, or the types of biological processes and

components that can be represented. However, modelers in

the biochemical domain may want to study many other aspects

of cells, such as evolution, motility, and replication. These do-

mains of study must either build custom models or employ tools

that are not standard-compatible. The tools we recommend also

have functional limitations in the domains that they serve. For

example, none of the recommended tools are suitable for

modeling biochemical models of cells at the genome scale.

Whole-cell models require tools that can scale to tens of thou-

sands of species types and reactions, identify parameters for

models of this size, and employ multi-algorithmic simulation to

integrate pathways, which are characterized with variable levels

of detail. Tools that address these limitations are under develop-

ment (Medley et al., 2016; Goldberg et al., 2018; Schwab et al.,

2000). The final chronic problem is that tools rarely support a

standard in its entirety, limiting their compatibility. This problem

grows worse when standards change frequently and when the

tools are produced as academic projects with limited funding

and high staff turnover. An example of this problem is that while

the SBML standard has augmented functionality provided

through packages for flux-balance analysis and hierarchical

models, no SBML simulator supports all of the additional pack-

ages. Given these limitations, the use of general-purpose

methods can be quite advantageous and even necessary for

investigating certain biological inquiries.

CONCLUSIONS

Although reproducibility is a core tenet of the scientific method,

until recently it has been difficult to reproducibly construct

biochemical models, because suitable standards and software

tools did not exist. Over the last two decades, the biochemical

modeling community has addressed this problem by developing

and adopting standards and tools that make reproducible con-

struction of many biochemical models feasible.



Table 2. Influence of Standards and Tools

Standard or Tool Type of Standard or Tool Most Cited Paper

Paper

Year

PubMed

(Cites per Year)

Scholar

(Cites per Year)

Reported

Use (%)

SciPy optimize,

ODE solver, etc.

Simulator Virtanen et al., 2020 2020 39.8 881.4 –

FAIR Modeling process guidelines Wilkinson et al., 2016 2016 142 590.7 –

SBML Modeling language Hucka et al., 2003 2003 50 183.8 69.5

COPASI Modeling application Hoops et al., 2006 2006 – 149.6 31.7

SBGN Modeling visualization

language

Le Novère et al., 2009 2009 – 71 2.4

COBRApy Simulator Ebrahim et al., 2013 2013 22.2 59.6 11.3

BioPAX Biochemical data manager Demir et al., 2010 2010 24.8 56.5 –

BioModels Model repository Li et al., 2010 2010 17.3 52.1 33.3

Pathway Tools Biochemical data manager Karp et al., 2002 2002 – 39.6 –

InChI Biochemical data standard Heller et al., 2015 2015 15.6 38.5 –

The ontology for

biomedical

investigations

Ontology Bandrowski et al., 2016 2016 – 33.4 –

Physiome Model repository Hunter and Borg, 2003 2003 4.9 32.8 –

KiSAO Ontology Courtot et al., 2011 2011 – 23.9 –

SBO Ontology Courtot et al., 2011 2011 – 23.9 –

Data2Dynamics Parameter estimation tool Raue et al., 2015 2015 7.8 23.7 1.1

BioNetGen Modeling language Harris et al., 2016 2016 7.7 22.5 8.5

SED-ML Simulation description

language

Waltemath et al., 2011b 2011 8.2 20.6 –

JWS Online Modeling application Olivier and Snoep, 2004 2004 4.6 19.9 5.4

PySB Modeling language Lopez et al., 2013 2013 6.3 19.6 6.5

CellML Modeling language Cuellar et al., 2003 2003 – 18.2 7.3

Vcell Modeling application Moraru et al., 2008 2008 6 17.7 2.7

MIASE Modeling process

guidelines

Waltemath et al., 2011a 2011 3.3 12.4 –

PROV Reproducibility standard Moreau et al., 2015 2015 – 12.2 –

Memote Validation tool Lieven et al., 2018 2018 – 12.1 –

libRoadRunner Simulator Somogyi et al., 2015 2015 4.6 11.1 5.4

FAIRDOMHub Model repository Wolstencroft et al., 2017 2017 3.2 10.6 –

SEEK Model repository Wolstencroft et al., 2015 2015 3.1 10.6 3.8

SESSL Simulation description

language

Ewald and Uhrmacher, 2014 2014 0 10.6 –

BioLab Validation tool Clarke et al., 2008 2008 – 10.1 –

COMBINE Biochemical data format Bergmann et al., 2014 2014 3.6 9.5 –

RightField Model data annotation

tool

Wolstencroft et al., 2011 2011 2.4 8.6 –

OpenCOR Simulator Garny and Hunter, 2015 2015 2.6 8.1 3.8

MIRIAM Modeling process guidelines Laibe and Le Novère, 2007 2007 3.1 7.9 –

PyDREAM Parameter estimation tool Shockley et al., 2018 2018 2.5 7.9 –

SBML-PET Parameter estimation tool Zi and Klipp, 2006 2006 1.7 7.1 –

StochSS Simulator Drawert et al., 2016 2016 2.7 7 –

Tellurium Modeling application Choi et al., 2018 2018 2.1 6.7 4.8

SBRML Model data annotation tool Dada et al., 2010 2010 1.7 6.2 –

PyBioNetFit Validation tool Mitra et al., 2019 2019 2.1 5 –

Sbtab Biochemical data format Lubitz et al., 2016 2016 1.8 5 –

HDF Data format Brown et al., 1993 1993 – 2.5 –

SciUnit Validation tool Omar et al., 2014 2014 – 2.3 –

(Continued on next page)
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Table 2. Continued

Standard or Tool Type of Standard or Tool Most Cited Paper

Paper

Year

PubMed

(Cites per Year)

Scholar

(Cites per Year)

Reported

Use (%)

SEPIO Ontology Brush et al., 2016 2016 – 1.8 –

BpForms and BcForms Biochemical data format Lang et al., 2020 2019 – 0.7 –

ObjTables Biochemical data format Karr et al., 2020 2020 – 0 –

The influence and adoption rates of the scientific standards and tools recommended above are quantified by three measures. The annual citation rate

for the primary publication is measured by Google Scholar and, where available, by PubMed. The latter reflects the impact of the work on biomedical

research. Entries are sorted by their Google Scholar citation rates. Where available, adoption rates have been integrated from the 210 responses to a

2017 survey of 542 scientists in a broad range of biomodeling and related experimental disciplines (Szigeti et al., 2018a). The survey asked scientists

which tools, resources, or languages they most frequently used.

This analysis employed reproducible methods. Two hand-curated tables were input: a list of scientific standards and tools containing the titles of their

primary publications and a BibTeX bibliography containing the papers. The publication year andGoogle Scholar citation counts were obtained for each

paper via a Google Scholar API. PubMed citation counts were obtained via the PubMed API (NCBI Resource Coordinators, 2014). Survey results were

integrated from a spreadsheet in the (Szigeti et al., 2018a) public repository for the survey (Szigeti et al., 2018b). The analysis can be reproduced by

executing two Python commands in the public repository that contains the analysis’ hand-curated tables and source code (Goldberg, 2020).
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We seek to further these advances by providing a comprehen-

sive and practical set of best practices for reproducibly creating

biochemical models. We recommend specific standards and

tools for each stage of model development. But if some stages

of model construction cannot employ the recommended stan-

dards and tools, a modeler can still implement our general-pur-

pose guidelines, which can be applied to any method. Biochem-

ical models constructed by following the recommended

practices will be easier to understand, trust, and reuse.

We envision a biochemical modeling community that routinely

publishes reproducible and reusable models, and which pro-

vides open access to their model artifacts. This would dramati-

cally reduce the effort modelers must devote to making larger

and more complex models by enabling reuse of models and

data, and facilitating collaboration. Achieving this vision would

accelerate the contributions made by modeling toward

advancing our understanding of biology and medicine.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
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