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Abstract

Systems biology has experienced dramatic growth in the number, size,
and complexity of computational models. To reproduce simulation
results and reuse models, researchers must exchange unambiguous
model descriptions. We review the latest edition of the Systems Biol-
ogy Markup Language (SBML), a format designed for this purpose. A
community of modelers and software authors developed SBML Level
3 over the past decade. Its modular form consists of a core suited to
representing reaction-based models and packages that extend the
core with features suited to other model types including constraint-
based models, reaction-diffusion models, logical network models,
and rule-based models. The format leverages two decades of SBML
and a rich software ecosystem that transformed how systems biolo-
gists build and interact withmodels. More recently, the rise of multi-
scale models of whole cells and organs, and new data sources such
as single-cell measurements and live imaging, has precipitated new

ways of integrating data with models. We provide our perspectives
on the challenges presented by these developments and how SBML
Level 3 provides the foundation needed to support this evolution.
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Introduction

Systems modeling and numerical simulations in biology can be

traced to the mid-20th century. Though general theorizing about

systems began earlier, the application of systems analysis to biology
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gained attention in the 1950s thanks to the work of biologists such

as von Bertalanffy and Kacser (Von Bertalanffy, 1950; Kacser,

1957). The era of numerical simulation in biology truly began with

the landmark works of Chance on enzyme kinetics (Chance et al,

1940), Hodgkin and Huxley on the molecular basis of neuronal

transmission (Hodgkin & Huxley, 1952), and Turing on the chemical

basis of morphogenesis (Turing, 1952). Since then, the number and

variety of models have grown in all of the life sciences. As precise

descriptions of phenomena that can be simulated, analyzed, and

compared with experimental data, models provide unique insights

that can confirm or refute hypotheses, suggest new experiments,

and identify refinements to the models.

The availability of more data, more powerful modeling methods,

and dramatically increased computing power led to the rise of

systems biology as a compelling research theme around the turn of

the millennium (Kitano, 2000; Ideker et al, 2001). Though computa-

tional models were at first published as printed equations in journal

articles, the desire to reuse an ever-increasing number of models

called for digital formats that were interoperable between software

systems and could be easily exchanged between scientists (topics of

interest as early as the 1960s; c.f. Garfinkel, 1969). This drove

efforts to create tool-independent ways of representing models that

could avoid the potential for human translation errors, be stored in

databases, and provide a common starting point for simulations and

analyses regardless of the software used (Goddard et al, 2001;

Hucka et al, 2001; Lloyd et al, 2004). One such effort was SBML,

the Systems Biology Markup Language. Its initial design was moti-

vated by discussions to create a “metabolic model file format”

following a 1999 workshop (recounted by Kell & Mendes, 2008). A

distributed community thereafter discussed ideas that informed

work at Caltech in late 1999/early 2000 and led (after a series of

public drafts) to the specification of the official version of SBML

Level 1 version 1 being released in March 2001 (Hucka et al, 2003).

While SBML was initially developed to exchange compartmental

models of biochemical reaction networks primarily formulated in

terms of chemical kinetics (Hucka et al, 2001), it was always under-

stood that there existed more types of models than the initial

version of SBML could represent explicitly. However, seeking

community consensus on a limited set of simpler features, which

could be readily implemented in software at the time, was deemed a

more pragmatic strategy. A deliberate decision was taken to delay

the addition of more advanced capabilities to a later time. As a

result, SBML has evolved in stages in a community-driven fashion

that has benefited from the efforts of many researchers worldwide

over two decades. As time passed, the need to support a broader

range of model types, modeling frameworks, and research areas

became apparent. SBML’s success in serving as an interchange

format for basic types of models led communities of modelers to ask

whether it could be adapted or expanded to support more types. In

addition to reaction-diffusion models, alternative modeling frame-

works have risen in popularity in the past decade (Machado et al,

2011), and researchers have faced interoperability problems
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between software tools developed for their use. These needs drove a

profound change in SBML’s structure: A facility to permit layering

the core of SBML with new features suited to more types of models,

together with a way for individual models to identify which sets of

extensions they need for proper interpretation. The release of SBML

Level 3 (Hucka et al, 2010) has provided a new foundation to

enable the exchange of a greater variety of models in various

domains of biology (Fig 1).

In the rest of this article, we begin by summarizing SBML’s

general structure and then describe the modularity introduced in

Level 3 and the wide range of modeling formalisms supported by

Level 3 packages. We follow that by describing the community

aspects of SBML development. We continue with a discussion of

SBML’s impact on both computational modeling and the modeling

community, and finally, we close with a discussion of forthcoming

challenges.

The structure of SBML

The core of SBML is focused on encoding models in which entities

are located in containers and are acted upon by processes that

modify, create, or destroy entities. The containers do not need to

correspond to physical structures; they can be conceptual or

abstract. Additional constructs allow parameters, initial conditions,

other variables, and other mathematical relationships to be defined

(Fig 2A). In the most common type of model, the “entities” are

biochemical substances, the “containers” are well-mixed and

spatially homogeneous, and the “processes” are biochemical reac-

tions happening within or between the containers. This originally

led to the SBML constructs being named species, compartments, and

reactions, respectively (Fig 2B), but these names are historical arti-

facts and belie the generality of the underlying scheme. Software

applications can map the names to other concepts to better suit their

purposes. For instance, “species” could be mapped to populations

of molecules, cells, or even organisms.

Modelers and software developers are encouraged to use

SBML’s reaction construct to define a model’s behavior in prefer-

ence to formulating the model explicitly as a system of equations.

This gives users freedom to convert the model into the final format

they prefer—a simpler operation than (for example) inferring a

reaction network from a system of differential equations. More

importantly, the approach also naturally handles models where

reaction kinetics are unknown or unneeded, such as interaction

maps, and supports the elaboration of the reaction construct using

SBML packages (discussed below). That said, the use of reactions

is optional, and SBML provides features sufficient for encoding a

large diversity of purely mathematical models, too. Whether using

reactions or not, values of model variables and their changes over

time may be fixed or determined by mathematical expressions,

either before or during simulation, continuously or in response to

discrete events, with or without time delays. Units of measurement

can be specified for all entities and values; in addition to adding a

layer of essential physical knowledge (after all, how else could one

interpret whether a time course is in milliseconds or years?), infor-

mation about units can be used to verify the relationships

expressed in a model. Units also facilitate reuse of models and

components, interconnection of models, conversion of models

between different frameworks, and integration of data with

models.

SBML does not dictate which framework must be used to analyze

or simulate a model; in fact, it purposefully lacks any explicit way

to specify what is done with a model—whether to run simulations

or other types of analyses, how to run them, or how to present the

results—because externalizing this information enhances model

reusability and permits independent innovation in separate but

complementary formats. Two of the most popular methods for time-

course simulation are commonly used: one is numerical integration

of differential equations created from the reactions and other rela-

tionships affecting model variables, and the other is simulating the

time evolution of the model as a stochastic system via algorithms

such as the one developed by Gillespie (1977). Alternative

approaches are also in use, particularly when a model is enhanced

with SBML packages.

Any element of an SBML model can be elaborated using

machine-readable metadata as well as human-readable notes. For

metadata, two schemes are supported. The first is direct labeling of

SBML elements with terms from the Systems Biology Ontology

(SBO; Courtot et al, 2011), which allows the mathematical seman-

tics of every element of a model to be precisely specified. The

second scheme uses semantic web technologies and provides

greater flexibility to capture additional metadata. For instance, a

molecular species in a model can be linked to a UniProt entry (The

UniProt Consortium, 2017) if it represents a protein, or to ChEBI

entry (Hastings et al, 2013) if it represents a simple chemical. Gene

Ontology terms (GO; Ashburner et al, 2000) can be attached to

species, compartments, and mathematical elements representing

biological processes and functions. Simple provenance data such as

identities of creators can be added to facilitate attribution and

versioning. To help standardize how annotations are stored, SBML

encourages the use of guidelines and resources established for this

purpose (Le Novère et al, 2005). Finally, software tools can also use

annotations to encode tool-specific data in their own formats, thus

providing a way to capture data that might otherwise be lost. Anno-

tations thereby help enrich the meaning of model components, facil-

itate the understanding and reuse of models, and help software

work with SBML more flexibly (Neal et al, 2019).

The core features described above have been a backbone of

SBML ever since Level 2, even as SBML continued to evolve. The

development of the modular Level 3, discussed in the next section,

provided an opportunity to rethink and redesign a few other rarely

used features. For example, the species charge attribute, designed to

represent molecular charge, was removed in Level 3 in favor of

letting an SBML package introduce more complete support for the

relevant concepts.

SBML Level 3’s modularity and breadth

Constant evolution in scientific methods presents challenges for the

creation of software tools and standards. One challenge arises

because the creation of new standards requires labor, testing, and

time. This often causes standardization efforts to lag behind the

latest technical developments in a constantly moving field. A second

challenge is that users want support for new methods and standards

in software tools, which pressures developers to implement support
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quickly. Combined with the first challenge, it means that sometimes

problems with a standard’s definition are not discovered until more

developers attempt to use it in different situations, which in turn

often means that revisions to a standard are needed after it is

published. Finally, another challenge is that software development

often takes place under resource constraints (funding and time),

limiting the scope of work that software developers can undertake—

including, sometimes, limiting how many features of a standard

they can support in their software.

The SBML community sought to address these challenges by

putting in place certain structural features in SBML’s develop-

ment process. The first is the notion of Levels. A Level in SBML

is an attempt to provide a given set of features for describing

models, with higher Levels providing more powerful features.

For example, the ability to express discrete events was added to

SBML Level 2 but does not exist in Level 1. SBML Levels are

mostly upwardly compatible, in the sense that the vast majority

of models encoded in Level n can be translated to Level n + 1.

Versions are used to introduce refinements to a given Level to

account for realizations that come from real-life use of SBML.

Finally, SBML Level 3 introduced an extensible modular architec-

ture consisting of a central set of fixed features (named SBML

Level 3 Core), and a scheme for adding packages that can

augment the Core by extending existing elements, adding new

elements, and adjusting the meaning or scope of elements. A

model declares which packages it uses in order to guide its

interpretation by software applications. If a software tool detects

the presence of packages that it does not support, it may inform

users if it cannot work with the model. Together, these three

features (Levels, Versions, packages) help address the challenges

discussed above: they ease coping with evolution in methods by

collecting significant changes into discrete stages (SBML Levels),

they help deal with the inevitable need for revisions (Versions

within Levels), and they allow developers to limit the feature set

groups layout
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Figure 1. SBML Level 3 (Hucka et al, 2019) consists of a core (center) and specialized SBML Level 3 packages (in blue), which provide syntactical constructs to
support additional modeling approaches.

The packages support new types ofmodeling (in the gray boxes) needed for large and complexmodels such as those used in various domains and fields of biology (in the light

red boxes). The meanings of SBML package labels such as “fbc” are given in Table 1, with additional package information in Box 1.
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they implement (SBML Levels on the one hand, and SBML Level

3 packages on the other).

Packages allow SBML Level 3 (Hucka et al, 2019) to represent

many model types and characteristics in a more natural way than if

they had to be shoehorned into SBML Core constructs exclusively.

Twelve packages have been proposed to date (Table 1); eight have

been fully developed into consensus specifications and are each used

by at least two software implementations (Box 1), and another two

have draft specifications in use by software tools. New packages can

be developed independently, within dedicated communities, at a

pace that suits them. This was the case for logical modeling with the

CoLoMoTo community (Naldi et al, 2015), constraint-based model-

ing within the COBRA community (Heirendt et al, 2019), and rule-

based modeling with a community of like-minded software creators

(Faeder et al, 2009; Zhang et al, 2013; Palmisano et al, 2014; Boutil-

lier et al, 2018).

Several benefits accrue from leveraging SBML as a starting point

rather than creating a new, independent format. One is it makes clear

where common features overlap. Most computational modeling

frameworks in the domain of biology share some common concepts

—variables that represent characteristics of different kinds of entities

and processes that represent interactions between entities, contain-

ers/locations, etc.—and reusing SBML Level 3 Core constructs makes

the conceptual similarities explicit. This in turn makes interpretation

of models easier (no need to learn new terminology) and reuse

simpler (no need to translate between independent formats). Another

benefit is that the creators of the format can leverage existing features

developed for SBML, such as mechanisms for annotations, rather

than spend time developing new approaches to achieving the same

goals in a new format. This in turn leads to another benefit: the ability

to reuse at least some parts of existing software libraries developed

for SBML. It also means that a software application may be able to

interpret at least some fundamental aspects of a model even if the

application is not designed to work with a particular SBML Level 3

package, by virtue of understanding SBML Core (and perhaps other

packages used by the model). This improves the potential for model

reuse, and benefits model creators and software developers alike.

Finally, a common foundation simplifies the creation of multiframe-

work models in which some parts of the model use one formalism

and other parts use others [e.g., coupling kinetic models with flux

balance analysis; Watanabe et al, 2018).

Though this modular approach has benefits, it is not without

potential pitfalls. The main risks are fragmentation of the commu-

nity, and incompatibility of packages due to complex feature depen-

dencies. The SBML community has addressed the former by

maintaining communications between package developers; the

community processes have such interactions built in. As for the

latter, API libraries (see Box 2) can handle some combinations of

packages and hide some of the complexity. Still, there remain some

combinations of packages that are not fully understood, and it

remains for future work to define how (if ever) they can be

combined for use in a single model.

SBML as a community standard

SBML’s success can be attributed largely to its community-based

development and its consensus-oriented approach. SBML has

always been developed through engagement with its user commu-

nity to achieve goals expressed by that same community. To resolve

occasionally conflicting technical demands, a guiding principle has

been to seek consensus between different viewpoints and the needs

of different groups, to find a middle ground that would be—while

perhaps not a perfect solution—an acceptable and usable solution.

This attracted the researchers and software developers who consti-

tute SBML’s foremost stakeholders. By using SBML in everything

from software to textbooks, they helped drive further development

to face the real needs expressed by the people who have those

needs. This engagement allowed faster feedback from users to

developers and has helped produce a rich toolkit of software and

other resources that facilitate SBML’s incorporation into software

(Box 2).

Over the years, the community has designed rules to organize its

governance, develop and maintain the specifications, and facilitate

collaboration among users. The development of SBML and its Level

3 packages is shepherded by the SBML Editors, a group of commu-

nity-elected volunteers serving terms of 3 years who follow a writ-

ten and public process detailed on the web portal SBML.org.1 SBML

Editors write or review SBML specification documents, organize

discussions and vote on specific technical issues, and enact the deci-

sions of the community. Major proposed changes to the specifi-

cations and packages are discussed by the community via the SBML

mailing lists2 as well as during annual face-to-face meetings.

The community currently comes together twice a year within the

context of meetings organized by COMBINE the Computational

Modeling in Biology Network; Hucka et al, 2015). HARMONY (the

Hackathon on Resources for Modeling in Biology) is a codefest that

focuses on the development of software, in particular via the devel-

opment of libraries, tools, and specifications; by contrast, the

COMBINE Forum meetings focus on the presentation of novel tools

and the discussion of proposed features. In addition to these general

meetings, special SBML working groups are organized as needed to

drive SBML package development. COMBINE’s central activity is

coordinating and harmonizing standardization in computational

biology, and SBML is one of its core standards. FAIRsharing, a

broader community network that covers life sciences more compre-

hensively (Sansone et al, 2019), maintains interconnected and orga-

nized collections of resources in many areas, including curated links

between SBML and many associated funders, databases, and stan-

dards.3

◀ Figure 2. A closer look at SBML.

(A) Fragments of the global structure of an SBML file. In this example, the use of several SBML packages is declared in the file header. Model elements in the file include the

descriptions of model variables, as well as their relationships. Elements of the same type are collected into “ListOf” elements; model parameters are in the ListOfParameters

element. SBML package elements can refer to elements in the SBML Core as necessary. (B) Model elements are linked through unique identifiers used in the mathematical

constructs and the elements describing the reactions, themolecular species, and their localization. The full model for this example is available in BioModels Database (Malik-

Sheriff et al, 2020) as the model with identifier MODEL1904090001.
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Impact of SBML

As contributors to developments in methods, software, and stan-

dards over the past two decades (Hucka et al, 2015), we can

attest to SBML’s profound impact on the field, both from our own

first-hand experiences and from surveys (Klipp et al, 2007) that

indicate SBML has become a de facto standard. The impact is a

result of SBML’s community-oriented development approach and

its design.

The SBML development process has helped shape the field partly

by directly involving software developers and modelers. Frequent

workshops have provided essential feedback for developers to help

them better serve modelers’ needs (e.g., Waltemath et al, 2014).

Workshops as well as resources such as the SBML Software Guide

(see Box 2) helped raise awareness of existing tools, which in turn

increased their use and the use of SBML. This helped create a

culture of sharing models and building on existing work in systems

biology (Stanford et al, 2015). It also led to new activities centered

on the models themselves, including automatic model generation,

analysis of model structures, model retrieval, and integration of

models with experimental data (Dräger & Palsson, 2014). SBML’s

successful approach to community organization has led other stan-

dardization efforts (BioPAX, NeuroML, SBGN, SED-ML) to adopt

some of the same approaches; SBML was also a founding member

of COMBINE (Hucka et al, 2015), discussed above. Some of the

primary standardization efforts in COMBINE, such as BioPAX

(Demir et al, 2010) and NeuroML (Gleeson et al, 2010), are more

domain-specific than SBML; others, such as CellML (Lloyd et al,

2004), overlap SBML’s primary domains but offer alternative

abstractions; and finally, still others, such as SBGN (van Iersel et al,

2012), SBOL (Roehner et al, 2016), and SED-ML (Waltemath et al,

2011), are complementary formats.

Before the advent of SBML, it was challenging to exchange

models because software tools used incompatible definition

schemes. As models increased in size and complexity, manually

rewriting them became more difficult, error-prone, and eventually

Table 1. Summary of SBML Level 3 Package statuses. Symbols: ● = released; ○ = not released; U = complete; = in progress; n/a = not
applicable.

Package name Label Purpose Specification
libSBML
Support

JSBML
Support

Test
Suite Reference

• Distributions distrib Define statistical distributions for
quantitative values.

U U Smith et al
(2020)

• Flux Balance
Constraints

fbc Define constraint-based models (a.k.a.
steady-state models)

U U U U Olivier and
Bergmann (2018)

• Groups groups Collect elements together for annotation
purposes. Groups have no mathematical
meaning and do not affect simulations

U U U n/a Hucka and Smith
(2016)

• Hierarchical
Model Composition

comp Define models composed of other models.
The “submodels” can be stored in the same
file or as separate files.

U U U U Smith et al
(2015)

• Layout layout Store positions and sizes of model
components in network diagrams of SBML
models. (Cf. the Rendering package.)

U U U n/a Gauges et al
(2015)

• Multistate,
Multicomponent, &
Multicompartment
Species

multi Define features such as states or binding
sites on molecular species, optionally in
combination with rule-based processes

U U U Zhang and
Meier-
Schellersheim
(2018)

• Qualitative
Models

qual Allow model where SBML species’ values
represent qualitative activity levels rather
than amounts or concentrations

U U U Chaouiya et al
(2015)

• Rendering render Extend the Layout package to enable storing
graphical symbols and styles, curves, colors,
and gradients in network diagrams

U U U n/a Bergmann et al
(2018)

○ Arrays arrays Define arrays of elements, such as arrays of
compartments. (Core SBML Level 3 supports
only scalar values.)

U U

○ Dynamical
Processes

dyn Describe the creation, destruction, and
movement of model elements during
simulation

U U

○ Extended math math Additional constructs not included in the
subset of MathML used by SBML Level 3
Core for mathematical expressions

○ Spatial Processes spatial Define spatially inhomogeneous
compartment geometries and processes
such as diffusion

U U
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untenable. The development of SBML has enabled the use of a

single model description throughout a project’s life cycle even when

projects involve heterogeneous software tools (Box 3). SBML-

compatible software tools today allow researchers to use SBML in

all aspects of a modeling project, including creation (manual or

automated), annotation, comparison, merging, parametrization,

simulation/analysis, results comparison, network motif discovery,

system identification, omics data integration, visualization, and

more. Such use of a standardized format, along with standard anno-

tation schemes (Neal et al, 2019) and training in reproducible meth-

ods, improves research workflows and is generally recognized as

promoting research reproducibility (Waltemath & Wolkenhauer,

2016).

The availability of a well-defined format has also facilitated the

comparison of software tools to each other. Using SBML-encoded

models has become the norm to assess the accuracy of modeling

software: initially it is done manually using models from BioModels

Database (Bergmann & Sauro, 2008), and now, it is more commonly

done using the SBML Test Suite (Box 2). SBML’s semantics are

defined precisely enough that many simulation systems can produce

equivalent results for over 1200 test cases, lending confidence that

SBML-based simulations can be reproducible in different software

environments.

While chemical kinetics models have been a staple of systems biol-

ogy, other modeling frameworks exist. These have benefited from

efforts to extend Level 3 to better suit their specific characteristics.

Even when models could in principle be encoded using core SBML

constructs, the use of features explicitly adapted to the needs of a

domain can make model interpretation less error-prone and more

natural. The former issue was demonstrated vividly when ad hoc

methods of encoding genome-scale models led to incorrect interpreta-

tions, and a subsequent proposal to use SBML Level 3 “fbc” addressed

representational inconsistencies that had hindered reproducibility

(Ebrahim et al, 2015). The use of more domain-specific forms of

encoding has been preferred by several communities, such as the

qualitative and rule-based modeling communities. For example, the

quickly adopted package SBML Level 3 “qual” (Chaouiya et al, 2015)

supports software interoperability for qualitative modeling, illus-

trated by the use of CellNOpt (Terfve et al, 2012), which provides a

set of optimal Boolean models that best explains the causal relation-

ships between elements of a signal transduction network and associ-

ated data, and the subsequent use of GINsim (Chaouiya et al, 2012)

or Cell Collective (Helikar et al, 2012) to assess the dynamical proper-

ties of these models. Rule-based modeling can represent models that

are impossible to express as reaction networks, such as polymeriza-

tion (Faeder et al, 2009), or simply impractical to represent due to the

combinatorial number of reactions implied by the rules (Hlavacek

et al, 2003). Storing rule definitions in SBML is now feasible with the

“multi” package, allowing rule-based modeling tools such as

Simmune (Zhang et al, 2013) and BioNetGen (Faeder et al, 2009) to

read andwrite the samemodel definitions.

SBML has also eased the automated processing of models to the

point where they have become just another type of data in the life

sciences. SBML is used today as an import/export format by many

databases of mathematical models (Misirli et al, 2014; Norsigian

et al, 2019; Malik-Sheriff et al, 2020), as well as by pathway data-

bases (Caspi et al, 2015; Mi et al, 2016; Fabregat et al, 2017) and

reaction databases (Ganter et al, 2013; Wittig et al, 2017). SBML is

the preferred format for model curation in BioModels Database

(Malik-Sheriff et al, 2020), not only because of its popularity but

also because of its provisions to precisely encode and annotate

models to support reproducible modeling. SBML is also used to

share models by more generic data management platforms such as

SEEK (Wolstencroft et al, 2016) and comprehensive online simula-

tion environments (e.g., Moraru et al, 2008; Weidemann et al,

2008; Lee et al, 2009; Peters et al, 2017). Moreover, having an

agreed-upon format has facilitated the introduction of better model

management strategies. This includes support for tasks such as

model storage and retrieval (Henkel et al, 2015), version control

(Scharm et al, 2016b), and checking quality and validity (Lieber-

meister, 2008; Lieven et al, 2020). The proliferation of derived

models has led to the development of methods to compare model

structure and semantic annotations (Lambusch et al, 2018), culmi-

nating in the development of several methods to quantify model

similarities (Henkel et al, 2016), that can then be used to improve

the relevance of model searches. Once model elements can be

compared, one can align, combine, and merge different models

(Krause et al, 2010).

A broader impact of SBML as a de facto standard has been the

support of publishers and funding agencies. Many journals, aware

of the challenges surrounding the reproducibility of scientific

results, encourage authors not only to describe their models but also

to make their models available in electronic form. Molecular Systems

Biology was the first supporter of submissions in SBML format (be-

ginning in 20054,5). Today, most journals still avoid requiring a

specific format, though some such as the BMC6 and FEBS7 journals

do explicitly encourage authors to submit SBML files as supporting

material for research where it is relevant. Others, such as Biophysi-

cal Journal (Nickerson & Hunter, 2017), recommend authors deposit

models in repositories such as BioModels Database, which encour-

ages the use of common standard formats such as SBML. Many

funding agencies also now have policies related to data sharing, and

some program announcements suggested the use of SBML where

appropriate.8

Finally, the continued development of SBML has stimulated

collaborative work and the creation of consortia. This has led to

better awareness and communication within groups interested in

specific modeling frameworks. A good example is the CoLoMoTo

effort mentioned above; it was launched by researchers who

needed a format to exchange qualitative models between their soft-

ware tools and developed the Qualitative Modeling package for

SBML (Naldi et al, 2015) as the solution. Nevertheless, challenges

remain, as discussed in the next section. These will need to be

confronted to ensure the longevity of SBML as well as continued

developments.

Forthcoming challenges

For nearly two decades, SBML has supported mathematical model-

ing in systems biology by helping to focus the efforts of the commu-

nity and foster a culture of openness and sharing. The field is

evolving rapidly, which presents challenges that the community and

SBML must face.

The first challenge is to remain usable in the face of relentless

growth in model sizes. One of the drivers of larger size is the rising
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popularity of genome-scale metabolic models (Bordbar et al, 2014),

which can be produced semi-automatically (Henry et al, 2010).

Modeling approaches have also been developed to combine the use of

several such models (e.g., Bordbar et al, 2011). It is reasonable to

expect models of ecosystems to be produced soon (microbiomes and

their host). Model sizes will also increase as more models of tissues

and organs are exchanged and reused, encouraged by the use of soft-

ware packages that facilitate this approach, such as the open-source

tools CHASTE (Mirams et al, 2013) and CompuCell3D (Swat et al,

2012). The challenge this presents is how to define, organize, and

manage large models. Meeting the challenge will require a combina-

tion of novel approaches to model storage (e.g., Henkel et al, 2015)

and comparison (e.g., Scharm et al, 2016a,b), as well as more effec-

tive use of SBML Level 3 features. For example, the SBMLHierarchical

Model Composition (“comp”) package (Smith et al, 2015) provides a

way to encodemodels in SBML out of separate building blocks or from

preexisting models; this can make larger models easier to structure

and maintain, and it is a natural way to construct multiscale models.

Similarly, the Arrays package may help to define and structure larger

models by allowingmodels to be defined in amore compact form.

SBML Level 3 packages officially part of the standard

Distributions

The “distrib” package (Smith et al, 2020) provides the means to encode information about the distribution and uncertainty of numerical values assigned
to a model element. Biological models often contain elements that have inexact numerical values, since they are based on values that are stochastic in
nature or data that contains uncertainty; however, core SBML has no direct support for encoding values sampled from distributions. The recently-finalized
“distrib” package adds constructs for sampling of random values from probability distributions and describing uncertainty statistics about element values.

Hierarchical model composition

The “comp” package (Smith et al, 2015) allows users to build models from other complete models or from model fragments, as a way to manage com-
plexity and construct composite models. “Submodels” can be described within the same SBML file or linked from external files. A submodel can act as a
template, and the same definition can be reused multiple times in other models to avoid duplication and enable reuse of parts. The “comp” package also
enables submodels to have explicit interfaces (known as ports) for optional black-box encapsulation. Finally, “comp” was designed so that a hierarchical
model can be converted into a single SBML model that does not use any “comp” features, making it readable by software that does not directly support
the package. The library libSBML (Bornstein et al, 2008) provides a facility to do this.

Flux balance constraints

The “fbc” package (Olivier & Bergmann, 2018) provides a means of encoding constraint-based models and optimizations, such as is done in Flux Balance
Analysis (Bordbar et al, 2014). Constructs in the “fbc” package allow for the definition of a list of objectives for minimization or maximization, as well as
flux bounds on reactions and gene-reaction mappings. Additional information such as chemical formula and charge enable further model analyses,
including calculation of reaction mass balances, electron leaks, or implausible sources of matter.

Groups

The “groups” package (Hucka & Smith, 2016) provides constructs to describe conceptual relationships between model elements. Groupings can indicate
classification, partonomy, or merely a collection of things; a group’s meaning can be specified using semantic annotations. Groups have no semantic
meaning and cannot influence the mathematical interpretation of an SBML model.

Multistate, multicomponent, and multicompartment species

The “multi” package (Zhang and Meier-Schellersheim, 2018) manages the combinatorics produced by entities either composed of multiple components,
such as molecular complexes, or that can exist in multiple states, such as proteins with post-translational modifications. With the “multi” package, rules
can be defined for how reactions depend on the states of the entities and their locations. The package adds syntactic constructs for molecular species
types, compartment types, features, binding sites, and bonds. Entire families of molecular complexes sharing certain properties can be defined using pat-
terns created using these constructs.

Qualitative models

The “qual” package (Chaouiya et al, 2015) provides constructs to encode models whose dynamics can be represented by discrete, reachable states con-
nected by state transitions denoting qualitative updates of model elements. Examples include logical regulatory networks (Boolean or multivalued) and
Petri nets. The “qual” package introduces SBML elements to allow the definition of qualitative species, which are used to associate discrete levels of
activities with entity pools, as well as transitions, which define the possible changes between states in the transition graph.

Layout and rendering

The “layout” (Gauges et al, 2015) and “render” (Bergmann et al, 2018) packages extend SBML to allow graphical representations of networks or pathways
to be stored within SBML files. The “layout” package enables the encoding of positions and sizes of graphical elements such as nodes and lines, while
the information about colors, fonts, etc., is defined by the “render” package. This separation presents several advantages. For example, applications can
offer multiple styles for visualizing the same layout of a network map. Most of the essential aspects of a network diagram can be expressed using just
the “layout” package, and thus tools do not necessarily have to implement a full graphics environment if they do not need to support customizing a dia-
gram’s look-and-feel.

ª 2020 California Institute of Technology Published under the terms of the CC BY 4 Molecular Systems Biology 16: e9110 | 2020 9 of 21

Sarah M Keating et al Molecular Systems Biology



A related challenge concerns human usability of SBML and simi-

lar XML-based formats. Though SBML is intended for software, not

humans, to use directly, desire for a text-based or spreadsheet-based

equivalent is often voiced (e.g., Kirouac et al, 2019). Various

answers have been developed in the form of text-based notations

(e.g., Gillespie et al, 2006; Smith et al, 2009) and spreadsheet

conventions (e.g., Lubitz et al, 2016), with bidirectional translators

for SBML. These formats have undeniable appeal for many users

and use cases, despite that they do not capture the entirety of SBML

(often having limited or missing facilities to express units, annota-

tions, or SBML packages). Their chief drawback is that they become

error-prone to use as model size increases. Graphical user interfaces

(GUIs; e.g., Funahashi et al, 2003; Hoops et al, 2006; Moraru et al,

2008) can overcome this; software with GUIs can help with the

cognitive burden of tracking large numbers of model elements. On

the other hand, GUIs can be tedious to use when entering large

models, performance of some software does not scale well with

increasing model sizes, and some cannot be controlled programmat-

ically for automation purposes. A middle ground may be domain-

specific modeling languages layered on top of programming

languages such as Python (e.g., Lopez et al, 2013; Olivier et al,

2005. However, these tend to appeal only to users who are comfort-

able with (or willing to take time to learn) the programming

language used as a substrate. Overall, further innovation in this area

would be welcome, both to help support SBML Level 3 packages

and to help users cope with ever-increasing model sizes.

Because of the diversity of biological phenomena amenable to

mathematical modeling, as well as their scales and properties, it is

likely that a broad variety of modeling approaches will be added to

every researcher’s essential toolbox (Cvijovic et al, 2014). Methods

such as multiagent and lattice approaches are coming into wider use

to represent evolving cell populations, cell migration, and deforma-

tion. Some researchers are experimenting with solutions using exist-

ing SBML packages (Watanabe & Myers, 2016; Varela et al, 2019).

Modeling the development of tissues and organ function may also

require combining these approaches with reaction-diffusion models,

or multiphysics approaches (Nickerson et al, 2016). Population

modeling will need to complement traditional instance-based

systems if we want to take into account patient variability or infor-

mation coming from single-cell measurements (Levin et al, 1997).

The coupling of different approaches within the same simulation

experiment is also becoming more frequent. Biomolecular reactions

modeled using ODEs, Poisson processes, and Flux Balance Analyses

have been coupled in the first whole-cell model (Karr et al, 2015).

At the organ level, liver lobules have been modeled using a combi-

nation of metabolism and multiagent models (Schliess et al, 2014).

Several approaches mixing modeling of cell mechanical properties

and gene regulatory networks or signaling networks have been used

Software infrastructure for SBML

Application Programming Interface (API)
Open-source (LGPL) libraries and code generators help read, write,
manipulate, validate, and transform SBML. They support all Levels and
Versions of SBML, and all Level 3 packages

1 LibSBML (Bornstein et al, 2008) (http://sbml.org/Software/libSBML), writ-
ten in C++, offers interfaces for C, C++, C#, Java, JavaScript, MATLAB,
Octave, Perl, PHP, Python, R, and Ruby

2 JSBML (Rodriguez et al, 2015) (http://sbml.org/Software/JSBML) offers a
pure Java API

3 Deviser (http://sbml.org/Software/Deviser) generates libSBML code for
rapid package prototyping

Test Suite
The SBML Test Suite (http://sbml.org/Software/SBML_Test_Suite) helps
developers implement SBML compatibility and helps users check SBML
features supported in software

1 Thousands of test cases for

• Semantic interpretation of models (for both deterministic and
stochastic simulation)

• Syntactic correctness
2 A graphical front end enables cases to be filtered by Level/Version and

type of test
3 An online database allows results to be uploaded and compared with

results from other simulators

Validation Facilities
Validation software can check files for compliance to the definition of SBML,
good modeling practices, and consistency of units

1 API libraries include built-in validation
2 Online validator has simple user interface (http://sbml.org/Facilities/Val

idator)
3 Web services support software access

Validation ensures compliance with:

• SBML syntax

• SBML validation rules published as part of each accepted SBML speci-
fication

Conversion Facilities
Converters (http://sbml.org/Software/Converters) can translate some
other formats to/from SBML

1 Conversion tools support format conversions from MATLAB, BioPAX,
CellML, XPP, SBtab, and others

2 Online services such as SBFC (Rodriguez et al, 2016) convert uploaded
files to a variety of formats

3 API libraries provide converters between different SBML Levels/Versions
and different SBML constructs

Software Guide

A catalog (http://sbml.org/SBML_Software_Guide) of software applications, libraries, and online services known to support SBML—over 290 entries to date

1 A tabular interface highlights supported SBML features of each software system.
2 A list interface displays human-readable summaries of software systems.
3 Software can be added to the list upon request.
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to study morphogenesis (e.g., Tanaka et al, 2015). The coupling of

different approaches can be done within a single hybrid model, or

each model can be simulated using different software and with

dynamic synchronization at run time (Mattioni & Le Novère, 2013).

Once again, the SBML “comp” package can play a role in supporting

these approaches, but other methods and software will be needed in

the future, as well as better support for coupling models at run time

using, for example, SED-ML (Waltemath et al, 2011).

These developments are arising in a landscape where structural

models are sometimes not the central object of study, and instead

function as collection of integrated information. An example of this

is RECON3D, a comprehensive human metabolic network with

metabolite and protein structure information (Brunk et al, 2018).

SBML will continue to have a pivotal role here too. When SBML

was introduced, the state of modeling workflows and software tools

was more primitive and it was natural that a model was self-

contained. SBML-encoded models often had predefined parameter

values (as initial values for state variables or parameters for mathe-

matical expressions), but today, modelers increasingly want to use

the same model with different parameterizations, sometimes with

parameter values expressed as distributions, lists, or ranges rather

than unique values. A project may also use an ensemble of related

models that differ in parameters or in turning some model elements

on or off (Kuepfer et al, 2007). The semantic annotation of SBML

elements also has become increasingly important, forming a

bedrock for many of the analyses using SBML-encoded models. The

growth in size and scope of annotations has recently led the model-

ing community to propose a standard way of storing annotations in

separate linked files (Neal et al, 2019), relying on the COMBINE

Archive format (Bergmann et al, 2014) to bundle everything

together. Other formats that can complement SBML have been

developed, and further coordination and evolution will undoubtedly

happen in the future. As mentioned above, SED-ML is a format that

provides a way to encode what to do with a model, which comple-

ments SBML and compensates for its lack of features to define

procedures. Finally, experimentation in integrating SBML more

directly with other formats and data also continues. For instance,

preliminary work has shown that SBML can be enriched with SBOL

(Voigt et al, 2018) to provide models of DNA components’ behavior

(Roehner & Myers, 2014), and conversely, ongoing work in support-

ing genome-scale models of metabolism and gene expression

(known as ME-models, Thiele et al, 2012) augments SBML with

SBOL to more fully capture models for use with ME-modeling soft-

ware. Future developments in modeling paradigms may require

Examples of SBML use cases

SBML’s impact on computational systems biology includes its facilitation of collaborative work. In multiple instances, it has precipitated entirely new pro-
jects, as illustrated by the examples below.

SBML throughout the model life cycle

Encoding a model in a standard format such as SBML makes it easier to use different software tools for different purposes without format conversion,
and thus makes it easier to leverage the most suitable tools at different points in a workflow. The following is an example. A signaling pathway can be
designed graphically using CellDesigner (Funahashi et al, 2003). The resulting model can then be semi-automatically annotated using the online tool
semanticSBML (Krause et al, 2010). Experimental kinetic information can be retrieved in SBML format from the SABIO-Reaction Kinetics database (Wittig
et al,2017). Tools such as COPASI (Hoops et al, 2006) and PyBioNetFit (Mitra et al, 2019) provide facilities to estimate parameters and to simulate the
model with various algorithms. Other SBML-enabled tools such as Tellurium (Medley et al, 2018) and PySCeS (Olivier et al, 2005) provide capabilities such
as identifiability and bifurcation analysis. Each step of the process applied to a model from creation to publication of results—modeling, simulation, and
analysis—can be documented using notes attached to every model element. The model can even be turned into a publishable document using
SBML2LaTeX (Dräger et al, 2009). Finally, the model can be exported from selected modeling tools, together with data and other information all bundled
together in COMBINE Archive format (Bergmann et al, 2014) and published in model repositories such as BioModels Database (Malik-Sheriff et al, 2020).

Pipeline for automated model building

Being able to describe model elements precisely using semantic annotations facilitates the creation of automated pipelines (Dräger et al, 2010). Such
pipelines can combine existing models with databases of molecular phenotypes or reaction kinetics (Li et al, 2010). They can also generate models de
novo from data resources, as has been demonstrated by the Path2Models project (Büchel et al, 2013). Path2Models has produced 143,000 SBML models
—all fully annotated—for over 2,600 organisms, by using pathway data. Metabolic pathways were encoded in SBML Level 3 Core while signaling path-
ways were encoded with the SBML “qual” package (Chaouiya et al, 2013). Moreover, constraint-based models of genome-scale reconstruction were pro-
vided for each organism. Other pipelines have now been built, including ones that can systematically generate alternative models for different tissue
types (Wang et al, 2012) and patient data (Uhlen et al, 2017), an important step toward personalized medicine.

Development, sharing, and reuse of genome-scale models of human metabolism

Constraint-based modeling approaches such as Flux Balance Analysis and its variants permit the use of whole-genome reconstructions together with
experimental molecular phenotypes, in order to predict how mutations or different environments affect metabolism as well as predict drug targets and
biomarkers (O’Brien et al, 2015). With the availability of genome-scale metabolic reconstructions, the use of metabolic flux models at the same scale has
been increasing (Bordbar et al, 2014). A recent development in the field has been the curation of consensus metabolic models, in particular for human
metabolism (Brunk et al, 2018). Those community efforts rely on SBML for encoding and sharing the models, including annotations, which are crucial to
being able to reuse the reconstructions later, and also for visual representation using the Layout (Gauges et al, 2015) and Rendering (Bergmann et al,
2018) packages. The Flux Balance Constraint package (Olivier & Bergmann, 2018) enables encoding of the information required for model optimization
and flux calculation. Unambiguous encoding in SBML has been shown to be crucial for interpreting models and precisely computing fluxes (Ebrahim
et al, 2015; Ravikrishnan & Raman, 2015), and new validation tools for genome-scale metabolic models have been made available by the larger commu-
nity (e.g., MEMOTE; Lieven et al, 2020).
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similar flexibility in how models are represented: some may be best

served by implementing new SBML packages, others by extending

existing packages, still others by combining SBML with other

formats.

Besides the technical challenges, social and cultural challenges

also exist for formats such as SBML. One is to continue raising

awareness among researchers, software developers, and funders of

the existence of SBML and related COMBINE standards. Some may

not yet be using SBML simply because they are not aware of it, or

its recent addition of support for many modeling formalisms (Fig 1).

Raising awareness will require continual education and outreach,

especially to students and early-career scientists. Awareness would

be aided by greater promotion on the part of journals and reviewers

of the use of SBML and related formats in paper submission guide-

lines. Despite some progress in this area (discussed in the previous

section), the lack of stronger demands by journals and reviewers is

surely one reason authors are either not aware or not motivated to

publish their models in software-independent formats.

In addition, usability of standard formats depends crucially on

their implementation in software tools, and motivating this work is

another challenge for SBML. A pivotal factor for the success of SBML

has been the extensive software ecosystem, which provides relatively

easy import and export of SBML from popular software systems.

However, implementing full SBML compatibility in software is not a

simple matter, and problems with compatibility in the software

ecosystem can be a significant source of frustration. Improving the

software requires continuous investment in tool development.

That, in turn, is related to a final challenge: obtaining and main-

taining funding. By virtue of not being a native format of any partic-

ular software tool, a format such as SBML may require extra work

to define by consensus, and then again for developers to implement

in software—and still, it will lag behind the leading edge of research

because exchange formats only become important after more than

one software system has something to exchange. Funders may

wonder whether the resources, time and effort spent on standards

development would not be better applied to other goals. However,

these costs must be weighed against the costs to a whole research

field of not having standards—and there are many such costs. To

take one example, models in nonstandard formats are more difficult

to review, verify, and reuse. Journal reviewers may not have access

to the necessary software, or the software may not be well tested,

all of which increase the chances that the published model contains

errors. Researchers can spend substantial time attempting to repro-

duce the results, only to fail. Worse, this is a repeating cost: failures

to reproduce models are rarely published or publicized, which

means an untold number of researchers may spend time (and

research funding) on a futile effort. Funders recognize that too many

research results are irreproducible, and have urged community

action (e.g., Collins & Tabak, 2014). The continued development of

exchange formats, such as SBML, is a crucial and cost-effective

means to enable reproducible research.

Conclusion

SBML and associated software libraries and tools have been instru-

mental in the growth of systems biology. As modeling and simula-

tion grew in popularity, SBML allowed researchers to exchange and

(re)use new models in an open, well-supported, interoperable

format. SBML has made possible much of the research pursued by

the authors of this article and also helped us to structure our

thoughts about our models and the biology they represent. Today,

scientists can build, manipulate, annotate, store, reuse, publish, and

connect models to each other and to basic data sources. In effect,

SBML has turned models into a kind of data and transformed model-

ing in biology from an art to an exercise in engineering.

As the field of systems biology continues to grow and address

emerging challenges, SBML will grow along with it. This evolution

will (as it always has) depend on close cooperation between biolo-

gists and software developers. We hope that SBML will continue to

be a source of inspiration for many researchers, especially those

new to the field. In return, may they help develop the next genera-

tion of SBML to support more comprehensive, richer, and more

diverse models, and expand the reach of systems modeling toward

entire cells, organs, and organisms.
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9. https://summerofcode.withgoogle.com

References

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT et al (2000) Gene Ontology: tool for the

unification of biology. Nat Genet 25: 25 – 29

Bergmann FT, Sauro HM (2008) Comparing simulation results of SBML

capable simulators. Bioinformatics 24: 1963 – 1965

Bergmann FT, Adams R, Moodie S, Cooper J, Glont M, Golebiewski M, Hucka

M, Laibe C, Miller AK, Nickerson DP et al (2014) COMBINE archive and

OMEX format: one file to share all information to reproduce a modeling

project. BMC Bioinformatics 15: 369

Bergmann FT, Keating SM, Gauges R, Sahle S, Wengler K (2018) SBML level 3

package: render, version 1, release 1. J Integr Bioinform 15: 20170078

Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BØ, Famili I (2011)

A multi-tissue type genome-scale metabolic network for analysis of

whole-body systems physiology. BMC Syst Biol 5: 180

Bordbar A, Monk JM, King ZA, Palsson BØ (2014) Constraint-based models

predict metabolic and associated cellular functions. Nat Rev Genet 15:

107 – 120

Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library

for SBML. Bioinformatics 24: 880 – 881

Boutillier P, Maasha M, Li X, Medina-Abarca HF, Krivine J, Feret J, Cristescu I,

Forbes AG, Fontana W (2018) The Kappa platformfor rule-based modeling.

Bioinformatics 34: i583 – i592

Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson

A, Gonzalez GAP, Aurich MK et al (2018) Recon3D enables a three-

dimensional view of gene variation in human metabolism. Nat Biotechnol

36: 272â˘A ¸S281

Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R,

Mittag F, Schubert M, Glont M, Golebiewski M et al (2013) Path2Models:

large-scale generation of computational models from biochemical

pathway maps. BMC Syst Biol 7: 116

Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A,

Krummenacker M, Laten-dresse M, Mueller LA et al (2015) TheMetaCyc

database of metabolic pathways and enzymes and the BioCyc collection

of pathway/genome databases. Nucleic Acids Res 44: D471 –D480

Chance B, Brainerd J, Cajori F, Millikan G (1940) The kinetics of the enzyme-

substrate compound of peroxidase and their relation to the Michaelis

theory. Science 92: 455

Chaouiya C, Naldi A, Thieffry D (2012) Logical Modelling of Gene Regulatory

Networks with GINsim. In Bacterial Molecular Networks, van Helden J,

Toussaint A, Thieffry D (eds), Vol. 804, Methods in Molecular Biology

(Methods and Protocols), New York, NY: Springer.

Chaouiya C, Bérenguier D, Keating SM, Naldi A, van Iersel MP, Rodriguez N,

Dräger A, Büchel F, Cokelaer T, Kowal B et al (2013) SBML qualitative

models: a model representation format and infrastructure to foster

interactions between qualitative modelling formalisms and tools. BMC

Syst Biol 7: 135

Chaouiya C, Keating SM, Berenguier D, Naldi A, Thieffry D, Le Novère N, Iersel

MPV, Helikar T (2015) SBML level 3 package: qualitative models, version 1,

release 1. J Integr Bioinform 12: 691 – 730

Collins FS, Tabak LA (2014) Policy: NIH plans to enhance reproducibility.

Nature 505: 612 – 613

ª 2020 California Institute of Technology Published under the terms of the CC BY 4 Molecular Systems Biology 16: e9110 | 2020 13 of 21

Sarah M Keating et al Molecular Systems Biology

http://sbml.org/Documents/SBML_Development_Process
http://sbml.org/Forums/
https://fairsharing.org/FAIRsharing.9qv71f
https://www.embo.org/news/press-releases/2005/now-live-molecular-systems-biology-a-first-in-systems-biology-publishing
https://www.embo.org/news/press-releases/2005/now-live-molecular-systems-biology-a-first-in-systems-biology-publishing
https://www.embopress.org/page/journal/17444292/authorguide#datadeposition
https://www.embopress.org/page/journal/17444292/authorguide#datadeposition
https://www.biomedcentral.com/getpublished/writing-resources/additional-files
https://www.biomedcentral.com/getpublished/writing-resources/additional-files
https://onlinelibrary.wiley.com/page/journal/17424658/homepage/ForAuthors.html
https://onlinelibrary.wiley.com/page/journal/17424658/homepage/ForAuthors.html
https://grants.nih.gov/grants/guide/pa-files/par-08-023.html
https://grants.nih.gov/grants/guide/pa-files/par-08-023.html
https://summerofcode.withgoogle.com


Courtot M, Juty NJ, Knüpfer C, Waltemath D, Zhukova A, Dräger A, Dumontier

M, Finney A, Golebiewski M, Hastings J et al (2011) Controlled

vocabularies and semantics in systems biology. Mol Syst Biol 7: 1

Cvijovic M, Almquist J, Hagmar J, Hohmann S, Kaltenbach HM, Klipp E, Krantz

M, Mendes P, Nelander S, Nielsen J et al (2014) Bridging the gaps in

systems biology. Mol Genet Genomics 289: 727 – 734

Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P,

Schaefer C, Luciano J et al (2010) The BioPAX community standard for

pathway data sharing. Nat Biotechnol 28: 935

Dräger A, Planatscher H, Wouamba DM, Schröder A, Hucka M, Endler L,

Golebiewski M, Müller W, Zell A (2009) SBML2LATEX: conversion of

SBML files into human-readable reports. Bioinformatics 25:

1455 – 1456

Dräger A, Schröder A, Zell A (2010) Automating mathematical modeling of

biochemical reaction networks. In Systems Biology for Signaling Networks,

Choi S (ed), pp 159 – 205. New York, NY: Springer

Dräger A, Palsson BØ (2014) Improving collaboration by standardization

efforts in systems biology. Front Bioeng Biotechnol 2: 61

Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP, Chang RL, Dräger A,

Famili I, Feist AM, Fleming RMT et al (2015) Do genome-scale models

need exact solvers or clearer standards? Mol Syst Biol 11: 831

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw

R, Jassal B, Korninger F, May B et al (2017) The Reactome pathway

knowledgebase. Nucleic Acids Res 46: D649 –D655

Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of

biochemical systems with BioNetGen. In Methods in Molecular Biology:

Systems Biology, Maly IV (ed), pp 113 – 167. Totowa, NJ: Humana Press

Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) Cell Designer: a

process diagram editor for gene-regulatory and biochemical networks.

BIOSILICO 1: 159 – 162

Ganter M, Bernard T, Moretti S, Stelling J, Pagni M (2013) MetaNetX.org: a

website and repository for accessing, analysing and manipulating

metabolic networks. Bioinformatics 29: 815 – 816

Garfinkel D (1969) Construction of biochemical computer models. FEBS Lett 2:

S9 – S13

Gauges R, Rost U, Sahle S, Wengler K, Bergmann FT (2015) The systems

biology markup language (SBML) level 3 package: layout, version 1 core. J

Integr Bioinform 12: 267

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phy Chem 81: 2340 – 2361

Gillespie CS, Wilkinson DJ, Proctor CJ, Shanley DP, Boys RJ, Kirkwood TBL

(2006) Tools for the SBML community. Bioinformatics 22: 628 – 629

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM,

Davison AP, Ray S, Bhalla US et al (2010) NeuroML: a language for

describing data driven models of neurons and networks with a high

degree of biological detail. PLoS Comput Biol 6: 1 – 19

Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001)

Towards NeuroML: model description methods for collaborative

modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356:

12091228

Hastings J, deMatos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan

V, Owen G, Turner S, Williams M et al (2013) The ChEBI reference

database and ontology for biologically relevant chemistry: enhancements

for 2013. Nucleic Acids Res 41: D456 –D463

Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A,

Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V et al (2019) Creation

and analysis of biochemical constraint-basedmodels using the COBRA

toolbox vol 3.0. Nat Protoc 14: 639 – 702

Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A,

Wicks B, Shrestha M, Limbu K, Rogers JA (2012) The cell collective: toward an

open and collaborative approach to systems biology. BMC Syst Biol 6: 96

Henkel R, Wolkenhauer O, Waltemath D (2015) Combining computational

models, semantic annotations and simulation experiments in a graph

database. Database 2015: bau130

Henkel R, Hoehndorf R, Kacprowski T, Knüpfer C, Liebermeister W, Waltemath

D (2016) Notions of similarity for systems biology models. Brief Bioinform

19: 77 – 88

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010)

High-throughput generation, optimization and analysis of genome-scale

metabolic models. Nat Biotechnol 28: 977

Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (2003) The

complexity of complexes in signal transduction. Biotechnol Bioeng 84:

783 – 794

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current

and its application to conduction and excitation in nerve. J Physiol 117:

500 – 544

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes

P, Kummer U (2006) COPASI – a complex pathway simulator.

Bioinformatics 22: 3067 – 3074

Hucka M, Sauro HM, Finney A, Bolouri H, Doyle J, Kitano H (2001) The

ERATO systems biology work bench: an integrated environment for

multiscale and multitheoretic simulations in systems biology. In

Foundations of Systems Biology, Kitano H (ed), pp 125 – 143. Cambridge,

MA: MIT Press

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,

Bornstein BJ, Bray D, Cornish-Bowden A et al (2003) The systems biology

markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524 – 531

Hucka M, Bergmann FT, Hoops S, Keating SM, Sahle S, Schaff JC, Smith L,

Wilkinson DJ (2010) The systems biology markup language (SBML):

language specification for level 3 version 1 core. Nature Preced https://

www.nature.com/articles/npre.2010.4959.1

Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A,

Golebiewski M, Myers CJ, Schreiber F et al (2015) Promoting coordinated

development of community-based information standards for modeling in

biology: the COMBINE Initiative. Front Bioeng Biotechnol 3: 19 .

Hucka M, Smith LP (2016) SBML level 3 package: groups, version 1 release 1. J

Integr Bioinform 13: 8 – 29

Hucka M, Bergmann FT, Chaouiya C, Dräger A, Hoops S, Keating SM, König M,

Novère NL, Myers CJ, Olivier BG et al (2019) The systems biology markup

language (SBML): language specification for level 3 version 2 core release

2. J Integr Bioinform 16: 20190021

Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems

biology. Annu Rev Genomics Hum Genet 2: 343 – 372

van Iersel MP, Villéger AC, Czauderna T, Boyd SE, Bergmann FT, Luna A,

Demir E, Sorokin A, Dogrusoz U, Matsuoka Y et al (2012) Software

support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28:

2016 – 2021

Kacser H (1957) Some physico-chemical aspects of biological organisation. In

The Strategy of the Genes: A Discussion of Some Aspects of Theoretical

Biology, Waddington CH (ed), pp 191 – 249. London: George Allen & Unwin

Ltd

Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell

modeling. Curr Opin Microbiol 27: 18 – 24

Kell DB, Mendes P (2008) The markup is the model: reasoning about systems

biology models in the Semantic Web era. J Theor Biol 252: 538 – 543

14 of 21 Molecular Systems Biology 16: e9110 | 2020 ª 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license

Molecular Systems Biology Sarah M Keating et al

https://www.nature.com/articles/npre.2010.4959.1
https://www.nature.com/articles/npre.2010.4959.1


Kirouac DC, Cicali B, Schmidt S (2019) Reproducibility of quantitative systems

pharmacology models: current challenges and future opportunities. CPT

Pharmacometrics Syst Pharmacol 8: 205 – 210

Kitano H (2000) Perspectives on systems biology. New Generat Comput 18:

199 – 216

Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J (2007)

Systems biology standards—the community speaks. Nat Biotechnol 25:

390 – 391

Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010)

Annotation and merging of SBML models with semantic SBML.

Bioinformatics 26: 421 – 422

Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis

of cell signaling dynamics. Nat Biotechnol 25: 1001

Lambusch F, Waltemath D, Wolkenhauer O, Sandkuhl K, Rosenke C, Henkel R

(2018) Identifying frequent patterns in biochemical reaction networks: a

workflow. Database 2018

Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J,

Crampin EJ, Halstead M, Klipp E, Mendes P et al (2005) Minimum

information requested in the annotation of biochemicalmodels (MIRIAM).

Nat Biotechnol 23: 1509 – 1515

Lee DY, Saha R, KhanYusufi FN, Park W, Karimi IA (2009) Web-based

applications for building, managing and analysing kineticmodels of

biological systems. Brief Bioinform 10: 65 – 74

Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical and

computational challenges in population biology and ecosystems science.

Science 275: 334 – 343

Li P, Dada JO, Jameson D, Spasic I, Swainston N, Carroll K, Dunn W, Khan F,

Malys N, Messiha HL et al (2010) Systematic integration of experimental

data and models in systems biology. BMC Bioinformatics 11: 582

Liebermeister W (2008) Validity and combination of biochemical models. In

Proceedings of 3rd International ESCECWorkshop on Experimental Standard

Conditions on Enzyme Characterizations, Kettner C, Hicks MG (eds), pp 24 .

Frankfurt: Beilstein-Institut

Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, Bartell

JA, Blank LM, Chauhan S, Correia K et al (2020) MEMOTE for

standardized genome-scale metabolic model testing. Nat Biotechnol 38:

272 – 276

Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and

past. Prog Biophys Mol Biol 85: 433 – 450

Lopez CF, Muhlich JL, Bachman JA, Sorger PK (2013) Programming biological

models in python using PySB. Mol Syst Biol 9: 646

Lubitz T, Hahn J, Bergmann FT, Noor E, Klipp E, Liebermeister W (2016)

SBtab: a flexible table format for data exchange in systems biology.

Bioinformatics 32: 2559 – 2561

Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling

formalisms in systems biology. AMB Express 1: 45

Malik-Sheriff RS, Glont M, Nguyen TVN, Tiwari K, Roberts MG, Xavier A, Vu

MT, Men J, Maire M, Kananathan S et al (2020) BioModels—15 years of

sharing computational models in life science. Nucleic Acids Res 48(D1):

D407 –D415

Mattioni M, Le Novère N (2013) Integration of biochemical and electrical

signaling-multiscale model of the medium spiny neuron of the striatum.

PLoS ONE 8: e66811

Medley JK, Choi K, König M, Smith L, Gu S, Hellerstein J, Sealfon SC, Sauro

HM (2018) Tellurium notebooks–An environment for reproducible

dynamical modeling in systems biology. PLoS Comput Biol 14: e1006220

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2016)

PANTHER version 11: expanded annotation data from Gene Ontology and

Reactome pathways, and data analysis tool enhancements. Nucleic Acids

Res 45: D183 –D189

Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y,

Dunn SJ, Fletcher AG, Harvey DG et al (2013) Chaste: an open source C++

library for computational physiology and biology. PLoS Comput Biol 9:

e1002970

Misirli G, Hallinan J, Wipat A (2014) Composable modular models for

synthetic biology. ACM J Emerg Technol Comput Syst 11: 22

Mitra ED, Suderman R, Colvin J, Ionkov A, Hu A, Sauro HM, Posner RG,

Hlavacek WS (2019) PyBioNetFit and the biological property specification

language. iScience 19: 1012 – 1036

Moraru II, Morgan F, Li Y, Loew LM, Schaff JC, Lakshminarayana A,

Slepchenko BM, Gao F, Blinov ML (2008) Virtual Cell modelling and

simulation software environment. IET Syst Biol 2: 352 – 362

Naldi A, Monteiro PT, Müssel C, Consortium for Logical Models and Tools,

Kestler HA, Thieffry D, Xenarios I, Saez-Rodriguez J, Helikar T, Chaouiya C

(2015) Cooperative development of logical modelling standards and tools

with CoLoMoTo. Bioinformatics 31: 1154 – 1159

Neal ML, König M, Nickerson D, Mısırlı G, Kalbasi R, Dräger A, Atalag K,

Chelliah V, Cooling MT, Cook DL et al (2019) Harmonizing semantic

annotations for computational models in biology. Brief Bioinform 20:

540 – 550

Nickerson D, Atalag K, de Bono B, Geiger J, Goble C, Hollmann S, Lonien J,

Müller W, Regierer B, Stanford NJ et al (2016) The Human Physiome:

how standards, software and innovative service infrastructures are

providing the building blocks to make it achievable. Interface Focus 6:

20150103

Nickerson DP, Hunter PJ (2017) Introducing the physiome journal:

improving reproducibility, reuse, and discovery of computational

models. In 2017 IEEE 13th International Conference on e-Science (e-

Science), Auckland. 2017: 448 – 449 https://doi.org/10.1109/eScience.2017.

65

Norsigian CJ, Pusarla N, McConn JL, Yurkovich JT, Dräger A, Palsson BO, King Z

(2019) BiGGModels 2020: multi-strain genome-scale models and expansion

across the phylogenetic tree. Nucleic Acids Res 48(D1): D402 –D406

O’Brien EJ, Monk JM, Palsson BØ (2015) Using genome-scale models to

predict biological capabilities. Cell 161: 971 – 987

Olivier BG, Rohwer JM, Hofmeyr JHS (2005) Modelling cellular systems with

PySCeS. Bioinformatics 21: 560 – 561

Olivier BG, Bergmann FT (2018) SBML level 3 package: flux balance

constraints version 2. J Integr Bioinform 15: 20170082

Palmisano A, Hoops S, Watson LT, Jones TC Jr, Tyson JJ, Shaffer CA (2014)

Multistate Model Builder (MSMB): a flexible editor for compact

biochemical models. BMC Syst Biol 8: 42

Peters M, Eicher JJ, van Niekerk DD, Waltemath D, Snoep JL (2017) The JWS

online simulation database. Bioinformatics 33: 1589 – 1590

Ravikrishnan A, Raman K (2015) Critical assessment of genome-scale

metabolic networks: the need for a unified standard. Brief Bioinform 16:

1057 – 1068

Roehner N, Myers CJ (2014) A methodology to annotate systems biology

markup language models with the synthetic biology open language. ACS

Synth Biol 3: 57 – 66

Rodriguez N, Thomas A, Watanabe L, Vazirabad IY, Kofia V, Gómez HF, Mittag

F, Matthes J, Rudolph JD, Wrzodek F et al (2015) JSBML 1.0: providing a

smorgasbord of options to encode systems biology models. Bioinformatics

31: 3383 – 3386

Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E,

Pocock M, Bissell M, Madsen C et al (2016) Sharing structure and

ª 2020 California Institute of Technology Published under the terms of the CC BY 4 Molecular Systems Biology 16: e9110 | 2020 15 of 21

Sarah M Keating et al Molecular Systems Biology

https://doi.org/10.1109/eScience.2017.65
https://doi.org/10.1109/eScience.2017.65


function in biological design with SBOL 2.0. ACS Synth Biol 5:

498 – 506

Rodriguez N, Pettit JB, Dalle Pezze P, Li L, Henry A, van Iersel MP, Jalowicki G,

Kutmon M, Natarajan KN, Tolnay D et al (2016) The systems biology

format converter. BMC Bioinformatics 17: 154

Sansone SA, McQuilton P, Rocca-Serra P, Gonzalez-Beltran A, Izzo M, Lister A,

Thurston M, Batista D, Granell R, Adekale M et al (2019) FAIRsharing as a

community approach to standards, repositories and policies. Nat

Biotechnol 37: 358 – 367

Scharm M, Waltemath D, Mendes P, Wolkenhauer O (2016a) COMODI: an

ontology to characterise differences in versions of computational models

in biology. J Biomed Semantics 7: 46

Scharm M, Wolkenhauer O, Waltemath D (2016b) An algorithm to detect and

communicate the differences in computational models describing

biological systems. Bioinformatics 32: 563 – 570

Schliess F, Hoehme S, Henkel SG, Ghallab A, Driesch D, Böttger J, Guthke R,

Pfaff M, Hengstler JG, Gebhardt R et al (2014) Integrated metabolic

spatial-temporal model for the prediction of ammonia detoxification

during liver damage and regeneration. Hepatology 60: 2040 – 2051

Smith LP, Moodie SL, Bergmann FT, Gillespie C, Keating SM, König M, Myers

CJ, Swat MJ, Wilkinson DJ, Hucka M (2020) Systems Biology Markup

Language (SBML) Level 3 Package: Distributions, Version 1, Release 1, J

Integr Bioinform (published online ahead of print), 20200018. https://doi.

org/10.1515/jib-2020-0018

Smith LP, Bergmann FT, Chandran D, Sauro HM (2009) Antimony: a modular

model definition language. Bioinformatics 25: 2452 – 2454

Smith LP, Hucka M, Hoops S, Finney A, Ginkel M, Myers CJ, Moraru I,

Liebermeister W (2015) SBML level 3 package: hierarchical model

composition, version 1 release 3. J Integr Bioinform 12: 268

Stanford NJ, Wolstencroft K, Golebiewski M, Kania R, Juty N, Tomlinson C,

Owen S, Butcher S, Hermjakob H, Le Novère N et al (2015) The evolution

of standards and data management practices in systems biology. Mol Syst

Biol 11: 851

Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA

(2012) Multi-scale modeling of tissues using CompuCell3D. In Methods in

Cell Biology, Volume 110, pp. 325 – 366. Amsterdam: Elsevier

Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation

environment for morphogenetic problems. Bioinformatics 31: 2340 – 2347

Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK,

van Iersel M, Lauffenburger DA, Saez-Rodriguez J (2012) CellNOptR: a

flexible toolkit to train protein signaling networks to data using multiple

logic formalisms. BMC Syst Biol 6: 133

The UniProt Consortium (2017) UniProt: the universal protein knowledgebase.

Nucleic Acids Res 45: D158 –D169

Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO (2012) Multiscale

modeling of metabolism and macromolecular synthesis in E. coli and its

application to the evolution of codon usage. PLoS ONE 7: e45635

Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc

Lond B Biol Sci 237: 5 – 72

Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif

M, Liu Z, Edfors F et al (2017) A pathology atlas of the human cancer

transcriptome. Science 357: eaan2507

Varela PL, Ramos CV, Monteiro PT, Chaouiya C (2019) EpiLog: a software for

the logical modelling of epithelial dynamics [version 2; peer review3

approved]. F1000Research 7: 1145

Voigt MA, Dräger A, Lloyd C, King ZA, Yang L (2018) draeger-lab/SBMLme:

SBMLme converter (Version 0.0.6). Available from Zenodo at https://doi.

org/10.5281/zenodo.1238905

Von Bertalanffy L (1950) An outline of general system theory. Br J Philos Sci 1:

134 – 165

Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK,

Moraru II, Nickerson D, Sahle S, Snoep JL et al (2011) Reproducible

computational biology experiments with SED-ML–the simulation

experiment description markup language. BMC Syst Biol 5: 198

Waltemath D, Bergmann FT, Chaouiya C, Czauderna T, Gleeson P, Goble C,

Golebiewski M, Hucka M, Juty N, Krebs O et al (2014) Meeting report from

the fourth meeting of the Computational Modeling in Biology Network

(COMBINE). Stand Genomic Sci 9: 1285 – 1301

Waltemath D, Wolkenhauer O (2016) How modeling standards, software, and

initiatives support reproducibility in systems biology and systems

medicine. IEEE Trans Biomed Eng 63: 1999 – 2006

Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic

models for 126 human tissues using mCADRE. BMC Syst Biol 6: 153

Watanabe LH, Myers CJ (2016) Efficient analysis of systems biologymarkup

language models of cellular populations using arrays. ACS Synth Biol 5:

835 – 841

Watanabe LH, König M, Myers CJ (2018) Dynamic Flux Balance

AnalysisModels in SBML. bioRxiv 245076 . https://doi.org/10.1101/245076

Weidemann A, Richter S, Stein M, Sahle S, Gauges R, Gabdoulline R,

Surovtsova I, Semmelrock N, Besson B, Rojas I et al (2008) SYCAMORE—a

systems biology computational analysis and modeling research

environment. Bioinformatics 24: 1463 – 1464

Wittig U, Rey M, Weidemann A, Kania R, Müller W (2017) SABIO-RK: an

updated resource for manually curated biochemical reaction kinetics.

Nucleic Acids Res 46: D656 –D660

Wolstencroft K, Krebs O, Snoep JL, Stanford NJ, Bacall F, Golebiewski M,

Kuzyakiv R, Nguyen Q, Owen S, Soiland-Reyes S et al (2016) FAIRDOMHub:

a repository and collaboration environment for sharing systems biology

research. Nucleic Acids Res 45: D404 –D407

Zhang F, Angermann BR, Meier-Schellersheim M (2013) The Simmune

Modeler visual interface for creating signaling networks based on bi-

molecular interactions. Bioinformatics 29: 1229 – 1230

Zhang F, Meier-Schellersheim M (2018) SBML Level 3 package: multistate,

multicomponent and multicompartment species, version 1, release 1. J

Integr Bioinform 15: 20170077

Appendix 1

Principal authors

Sarah M Keating [S.M.K.] (https://orcid.org/0000-0002-3356-3542)

(1) Computing and Mathematical Sciences, California Institute of

Technology, Pasadena, California 91125, US; (2) European Bioinfor-

matics Institute, European Molecular Biology Laboratory (EMBL-

EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK; (3)

BioQuant/COS, Heidelberg University, Heidelberg 69120, Germany.

Dagmar Waltemath [D.W.] (https://orcid.org/0000-0002-5886-

5563) Medical Informatics, Institute for Community Health, Univer-

sity Medicine Greifswald, Greifswald, Germany.

Matthias König [M.K.] (https://orcid.org/0000-0003-1725-179X)

Institute for Theoretical Biology, Humboldt-University Berlin, Berlin,

10115, Germany.

Fengkai Zhang [F.Z.] (https://orcid.org/0000-0001-7112-9328)

Laboratory of Immune System Biology, National Institute of Allergy

and Infectious Diseases, National Institutes of Health, Bethesda,

Maryland 20892, United States.

16 of 21 Molecular Systems Biology 16: e9110 | 2020 ª 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license

Molecular Systems Biology Sarah M Keating et al

https://doi.org/10.1515/jib-2020-0018
https://doi.org/10.1515/jib-2020-0018
https://doi.org/10.5281/zenodo.1238905
https://doi.org/10.5281/zenodo.1238905
https://doi.org/10.1101/245076
https://orcid.org/0000-0002-5886-5563
https://orcid.org/0000-0002-5886-5563
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0001-7112-9328
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