
The principles of whole-cell modeling
Jonathan R Karr1, Koichi Takahashi2,3 and Akira Funahashi4

Available online at www.sciencedirect.com

ScienceDirect
Whole-cell models which comprehensively predict how

phenotypes emerge from genotype promise to enable rational

bioengineering and precision medicine. Here, we outline the

key principles of whole-cell modeling which have emerged

from our work developing bacterial whole-cell models: single-

cellularity; functional, genetic, molecular, and temporal

completeness; biophysical realism including temporal

dynamics and stochastic variation; species-specificity; and

model integration and reproducibility. We also outline the

whole-cell model construction process, highlighting existing

resources. Numerous challenges remain to achieving fully

complete models including developing new experimental tools

to more completely characterize cells and developing a strong

theoretical understanding of hybrid mathematics. Solving these

challenges requires collaboration among computational and

experimental biologists, biophysicists, biochemists, applied

mathematicians, computer scientists, and software engineers.
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Introduction
Whole-cell models are computational models which de-

scribe how phenotype arises from genotype [1,2,3�]. The

primary goal of whole-cell modeling is to enable rational

bioengineering and precision medicine. Combined with

genome synthesis [4] and transplantation [5], whole-cell

models could enable bioengineers to maximize objectives

such as biofuel production by optimizing genomes [6,7].

Such models could also enable clinicians to individualize

therapy [8–10]. Furthermore, whole-cell models could be

powerful scientific tools.
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Shuler et al. introduced the first coarse-grained ordinary

differential equation whole-cell model in 1979 [11,12�].
Twenty years later, when sequencing provided the first

biological parts list, Tomita et al. [13�] developed the first

large-scale fine-grained dynamical model. Researchers

have continued to develop increasingly sophisticated

dynamical models [14–16]. In parallel, Varma and Palsson

used flux balance analysis (FBA) to create the first static

genome-scale metabolic models [17]. The latest FBA

models represent over 1000 genes [18]. Researchers have

since expanded FBA to represent transcriptional regula-

tion [19], transcription and translation [20�], and signaling

[21]. Logical methods have also been used [22]. Recently,

we and others used a hybrid methodology to construct the

first dynamical model which represents every known

molecular species and gene function [23��,24,25]. Simul-

taneously, Roberts et al. developed the first cell-scale

structural model [26�].

Here, we describe the core principles of whole-cell

modeling. We also outline our model construction pro-

cess, highlighting existing tools and the challenges to

achieving complete models.

The principles of whole-cell modeling
Building on Roberts’ discussion [27], we outline 11 fun-

damental and practical principles of whole-cell modeling

to illuminate a path toward complete models (Figure 1).

Single-cellularity

First, whole-cell models should represent individual cells.

Single-cell models can account for how temporal dynam-

ics and stochastic variation affect behavior. Single cells

are also tractable because they are independent and

directly result from molecular biochemistry. Further-

more, single-cell models can take advantage of the grow-

ing wealth of single-cell data.

Functional closure

Behavior is determined by interacting pathways and

genes. Consequently, whole-cell models should represent

every known cellular and gene function. Models which

represent every known function are powerful tools. For

example, genome-scale metabolic models which repre-

sent every known metabolic reaction and enzyme have

been used to identify missing reactions and enzymes [28].

Molecular closure

Whole-cell models should represent the cell and its envi-

ronment as a closed system. Models should explicitly

account for exchanges among pathways and the environ-

ment and not have arbitrary sources and sinks. This ensures
www.sciencedirect.com
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Fundamental (blue) and practical (green) principles of whole-cell modeling. No existing model satisfies every principle. The most advanced

functional models are incomplete and do not fully represent molecular biophysics. The most advanced structural models do not represent cellular-

scale behavior. Further work is needed to merge functional and structural modeling and expand their scope.
that models recognize important and often ignored con-

nections such as the common energy carrier ATP. In turn,

this enables models to capture pathway interactions that are

often missed by studying pathways in isolation, such as how

the energy charge affects phosphorylation and signaling.

Temporal closure

Whole-cell models should also represent the entire cell

cycle. This ensures that models account for how cells

regulate pathways in time to coordinate their life cycle.

For example, models should account for how the dynam-

ics of DNA replication affect dNTP concentrations and

metabolism. Temporally complete models can also lever-

age cell theory, the fact that cells come from other cells, to

constrain their dynamics. Assuming constant external

conditions and absent evolution, cell theory implies that

cellular populations are stable across generations. This

provides a periodic constraint which enables dynamical

modeling with minimal dynamical data.

Biophysics

In addition, whole-cell models should represent cellular

biochemistry and biophysics, including mass conserva-

tion, thermodynamics, and spatial organization. This pro-

vides a recipe for bottom-up model construction,

reducing the space of possible models. Takahashi

et al. have reviewed several mathematical frameworks

which are capable of representing cellular biophysics [29].

Dynamics

In particular, whole-cell models should be constructed

from differential descriptions of molecular biochemistry

and predict the emergence of cellular-scale dynamics.
www.sciencedirect.com 
Emergent dynamics are valuable opportunities for exper-

imental validation and discovery.

Stochasticity

Furthermore, whole-cell models should be discrete and

stochastic. Stochastic models naturally predict the emer-

gence of cellular variation. For example, stochastic mod-

els can account for how stochastic transcription initiation

creates variation in gene expression and growth. This

variation is another valuable opportunity for experimental

validation.

Species-specificity

Whole-cell models must be evaluated by comparison to

experimental data. Consequently, whole-cell models

should represent specific genomes. This constrains the

space of training data.

Parsimony

Despite the explosion in experimental data, limited data

is available. For example, there is little data about non-

coding RNA. Consequently, models should be parsimo-

nious. This minimizes the need to identify unmeasured

parameters.

Modularity

Absent an ab initio theory of biochemistry, whole-cell

models must be based on many experimental descriptions

of molecular biology. Consequently, like other large engi-

neered systems, whole-cell models are best developed by

combining multiple pathway submodels. This enables

submodels to be developed and tested independently

by different investigators using different representations.
Current Opinion in Microbiology 2015, 27:18–24
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Reproducibility

Finally, whole-cell models should be transparent, well-

annotated, and reproducible. Researchers should be able

to reproduce models from their primary sources, as well as

reproduce simulations using multiple simulators. Models

should also be described using transparent languages like

SBML [30]. This is essential for collaborative modeling.

Model construction
Achieving these principles requires new approaches and

tools. We briefly outline our approach to constructing

whole-cell models (Figure 2), highlighting important

areas for further research.

Experimental curation

The first step to constructing a model is to choose an

organism and assess the feasibility of modeling it by

assembling the available experimental knowledge. We

have manually assembled training data from public data-

bases and journal articles. Tables S1 and S2 list the most

informative technologies and databases. Higher annota-

tion standards are needed to enable modelers to take

more advantage of published data [31]. We have orga-

nized our training data using model organism database

tools such as Pathway Tools [32], WholeCellKB [33],

BioMart [34], and Intermine [35].
Figure 2
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Whole-cell modeling process. Experimental data is organized into a

database, pathway submodels are constructed, submodels are

combined, parameters are identified, the model is simulated and

tested, and the model is used to guide discovery and bioengineering.

The process is iterated using additional data to refine the model until

an accurate model is achieved.
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New experimental methods which fully characterize cells

are needed to enable more comprehensive and accurate

models. Improved metabolomic methods which are capa-

ble of quantitating the concentration of every metabolite

are needed to train metabolic models. New proteomic

methods are needed to characterize macromolecular com-

plexes including their rates of formation and subunit

composition dynamics. Improved interaction screens are

needed to resolve the function of each individual interac-

tion including every individual chaperone-substrate, pro-

tease-substrate, and miRNA–mRNA interaction. New

high-throughput methods are needed to comprehensively

quantitate reaction kinetics. Additional tools are also need-

ed to comprehensively characterize single-cell temporal

and population variance including of metabolite and pro-

tein concentrations, as well as of systems properties such as

the growth rate, cell cycle phase durations, cell size, and

reaction fluxes.

This manual reconstruction approach has been feasible

for small bacteria. More scalable approaches will be

needed for more complex bacteria and eukaryotes. One

potential solution is to automatically reconstruct knowl-

edge using cognitive computing [36] or other machine

learning techniques [37–39]. A second potential solution

is to engage a large community of scientists. Both of these

will require additional molecular databases such as

BRENDA [40] and UniProt [41] which are either manu-

ally assembled by single researchers, community assem-

bled by self-curation during publication [42], or

automatically assembled using natural language proces-

sing [43].

Mathematical formulation

Second, a mathematical description of how cells evolve

over time must be constructed. We have described cells as

thoroughly as possible given our current knowledge,

desire to predict cellular behavior, and limited time

and resources. This strategy takes full advantage of our

existing knowledge, avoids unknown parameters and

expensive computations of processes such as diffusion

which minimally affect behavior, and enables one model

to be used for many scientific questions. In practice, until

whole-cell models are complete, modelers will need to

focus on the pathways most relevant to their research.

In our experience, the easiest way to construct a whole-

cell model, like any other large engineered system, is to

assemble multiple pathway submodels. This approach is

scalable because it enables pathways to be modeled and

tested independently by different investigators using

different mathematical formalisms.

Individual submodels must be implemented and/or con-

structed from experimental data. BioModels [44] and the

CellML model repository [45] contain many existing path-

way models. However, most pathways have not been
www.sciencedirect.com
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modeled, and most existing models must be modified for

integration with other models. The primary obstacle to

modeling pathways is the lack of quantitative data. New

experimental technologies are needed to characterize more

pathways.

Rule-based modeling is a powerful and scalable approach

for assembling genome-scale models [46,47]. Several

rule-based and conventional tools can be used to con-

struct and modify pathway models including BioNetGen

[46], BioUML [48], CellDesigner [49], CobraPy [50],

COPASI [51], E-Cell [2], iBioSim [52], and JDesigner

[53]. Table S3 lists several additional tools. Further work

is needed to scale up these tools for larger models.

Submodel integration

Next, individual submodels must be combined. Mathe-

matically homogeneous submodels can be merged ana-

lytically. Heterogeneous submodels must be combined

by dividing the state variables into independent subvari-

ables dedicated to each submodel; integrating the indi-

vidual submodels based on these subvariables; and

merging the subvariables to update the global variables.

The integration time step should be set faster than the

fastest inter-pathway dynamics. Slower time steps will

introduce communication delays. We and others have

developed hybrid simulators which are capable of inte-

grating heterogeneous submodels [2,3,23��,54–56]. Fur-

ther work is needed to develop a deeper theoretical

understanding of multi-algorithm modeling.

Parameter estimation

Once the model’s structure has been implemented, the

model’s parameters must be identified by matching the

model’s predictions to experimental data. Identifying

whole-cell models is challenging because they are high-

dimensional, stochastic, and computationally expensive.

We have followed a three-step approach to parameter

identification. First, we have only created parameters

whose values can be estimated from one or a few experi-

mental observations. Second, we have used public data to

estimate each parameter. Third, we have refined parameter

values by numerically minimizing the prediction error of a

manually constructed reduced model which approximates

the full model.

Unfortunately, this approach is not scalable. Building

increasingly comprehensive models requires increasingly

comprehensive experimental data. Manually constructing

reduced models is also not scalable.

There are many other promising local and global param-

eter identification strategies. Several researchers have

reviewed these approaches and their application to smal-

ler models [57–59]. Several innovations are needed to

apply these methods to larger, hybrid models. Automated

model reduction [60–62] is needed to construct models
www.sciencedirect.com 
which are tractable to numerical optimization. Research-

ers should pursue both statistical and physics-based

approaches. Automatic differentiation should be applied

to improve the efficiency of gradient-based optimization

[63]. Faster, parallelized simulation engines and distrib-

uted optimization procedures should be applied to ex-

plore parameters more quickly [64,65].

Model refinement and validation

The last step to constructing a whole-cell model is to

iteratively evaluate the model’s predictions and refine the

model. We have focused on evaluating the predicted

phenotypes of genetic perturbations. Additional data

representing single-cell variation and cell cycle dynamics

are needed for more rigorous validation. Experimental

design based on predicting the most likely informative

experiments [58], robotic and microfluidic experimenta-

tion [66], and computational gap filling [67] should be

applied to automate model refinement.

Visualization and analysis

The final steps in whole-cell modeling are to simulate the

model, analyze simulation results to construct new hy-

potheses, and conduct experiments to test those hypoth-

eses. We have developed WholeCellSimDB to organize

simulation results and facilitate large-scale analyses [68].

We have also developed WholeCellViz [69] and the E-

Cell session monitor [70] to visualize simulation results.

We have used these tools to gain new insights into cellular

energy usage [23��], learn kinetic parameters [71], and

analyze the metabolic demands of synthetic gene net-

works [72]. Numerous other visualization software are

available including Cytoscape, Gephi, VANTED, and

VisANT [73].

Conclusions
Whole-cell models promise to predict how genotype

determines phenotype. Combined with genome synthe-

sis and transplantation, whole-cell models could enable

bioengineers to construct cellular factories. Whole-cell

models could also enable clinicians to individualize ther-

apy. Furthermore, whole-cell models would be unprec-

edented scientific tools.

Whole-cell models have several advantages over focused

models. They are constructed once, but can drive many

scientific, engineering, and medical questions. They can

also predict non-intuitive effects by chaining together

many individually intuitive interactions. Furthermore,

they can systematize biological discovery and unify dis-

parate research.

Whole-cell modeling is a new and exciting field with

numerous challenges that require collaboration among

computational and experimental biologists, bioinforma-

ticists, and computer scientists. Table S4 lists several

efforts to build a whole-cell modeling community.
Current Opinion in Microbiology 2015, 27:18–24
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We have proposed 11 principles to guide what whole-cell

models represent and how they presently must be con-

structed. Our own work has followed most of these

principles. However, as detailed by Macklin et al., further

work is required to achieve all of these principles even for

the simplest bacteria [74]. A high-level declarative lan-

guage is needed to describe models more transparently,

theoretical studies are needed to better understand multi-

algorithm models, and more efficient simulators are need-

ed to simulate models more quickly.

To date, we have manually reconstructed and identified

whole-cell models which represent hundreds of genes.

Achieving models of more complex bacteria and eukar-

yotes, which represent tens of thousands of genes,

demands new automated pathway reconstruction meth-

ods based on artificial intelligence techniques such as

machine learning, natural language processing, and on-

tology engineering. These models will contain hundreds

of thousands of quantitative parameters such as binding

affinities and rate constants. Identifying their values will

demand new high-throughput experiments which can

quantitate individual molecular interactions, as well as

new biophysical models which can accurately predict

quantitative parameters from sequences. Ultimately,

whole-organism models will require hierarchical model-

ing approaches which use agent-based modeling to com-

bine multiple whole-cell models of multiple cell types. In

addition, alternative incentives are needed to reward

collaborative modeling. Solving these challenges will

allow whole-cell modeling to fulfill its promise of en-

abling bioengineering and precision medicine.
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