
Exact Parallelization of the Stochastic Simulation Algorithm for Scalable Simulation
of Large Biochemical Networks

Arthur P. Goldberg,1, a) David R. Jefferson,2, b) John A. P. Sekar,1, c) and Jonathan R.
Karr1, d)
1)Icahn Institute for Data Science and Genomic Technology, and Department of
Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
2)Lawrence Livermore National Laboratory

(Dated: 22 May 2020)

Comprehensive simulations of the entire biochemistry of cells have great potential to
help physicians treat disease and help engineers design biological machines. But such
simulations must model networks of millions of molecular species and reactions.

The Stochastic Simulation Algorithm (SSA) is widely used for simulating biochem-
istry, especially systems with species populations small enough that discreteness and
stochasticity play important roles. However, existing serial SSA methods are pro-
hibitively slow for comprehensive networks, and existing parallel SSA methods, which
use periodic synchronization, sacrifice accuracy.

To enable fast, accurate, and scalable simulations of biochemistry, we present an
exact parallel algorithm for SSA that partitions a biochemical network into many SSA
processes that simulate in parallel. Our parallel SSA algorithm exactly coordinates
the interactions among these SSA processes and the species state they share by
structuring the algorithm as a parallel discrete event simulation (DES) application
and using an optimistic parallel DES simulator to synchronize the interactions. We
anticipate that our method will enable unprecedented biochemical simulations.

a)Author to whom correspondence should be addressed: Arthur.Goldberg@mssm.edu
b)Electronic mail: drjefferson@gmail.com
c)Electronic mail: karr@mssm.edu
d)Electronic mail: john.sekar@mssm.edu

1

ar
X

iv
:2

00
5.

05
29

5v
2

 [
q-

bi
o.

M
N

]
 2

0
M

ay
 2

02
0

mailto:Arthur.Goldberg@mssm.edu
mailto:drjefferson@gmail.com
mailto:karr@mssm.edu
mailto:john.sekar@mssm.edu

I. INTRODUCTION

Models of biochemical systems play a critical role advancing medicine and bioengineering.
Technological advances in single-cell and genomic measurement are rapidly generating data
that enable larger and more complex models of biochemical pathways and whole cells. But
advances in the performance and accuracy of simulation techniques are needed for integrating
models.

The Stochastic Simulation Algorithm (SSA) is a widely used method for predicting the
time evolution of chemical systems transformed by chemical reactions.1,2 In particular, SSA
can model the variability exhibited by chemical systems with small species populations,
conditions which often arise in small biological systems such as populations of individual
cells.3,4

Our interest in creating tools to enable dynamical models of large biochemical systems has
motivated us to parallelize SSA. We are especially interested in whole-cell modeling, which
creates genome-scale models of the known biochemical pathways in individual cells.5–8 A
whole-cell model of a cell with a large genome, like a human cell, contains tens of thousands of
species and tens of thousands of reactions. In addition, it contains numerous compartments
that represent intracellular organelles such as the nucleus, mitochondria, lysosomes and
others. Whole-cell models are typically integrated for an entire cell cycle.7 The complexity
of whole-cell models and the duration of their integrations cause their simulations run slowly.
A highly parallel SSA algorithm could speed up simulations of models of large biochemical
systems like whole-cell models.

There are multiple opportunities for parallelism in the simulation of biochemical net-
works due to the physical structure of cells, as well as due to artifacts of the limited ability
of researchers to estimate their structure. First, the compartmentalization of cells into or-
ganelles means that the biochemical networks of a cell decomposes into a set of biochemical
sub-networks of the organelles, weakly connected via edges that represent a comparatively
small number of exchange reactions. Second, the subcompartmentalization of organelles into
spatial domains such as chromosomal regions and individual mRNA means that the sub-
networks of the organelles decompose into weakly connected cliques. Third, the chemical
specificity of most enzymes means that the sub-networks of the organelles further decom-
pose into cliques. Fourth, our limited knowledge of the interactions among cellular processes
means that our in silico biochemical networks have higher clustering coefficients than real
biochemical networks.

Exact implementations of SSA are computationally expensive when modeling systems
that involve many reaction executions because they execute only one reaction per itera-
tion. In addition, since SSA models stochastic behavior, multiple runs are needed to obtain
distributions and moments of predicted properties.

While extensive effort has been devoted to improving the performance of SSA9–12 an
exact, parallel SSA algorithm that can concurrently leverage numerous processors to speed
up an SSA simulation is not available.

We introduce a novel parallel algorithm for speeding up SSA. Our approach conceives of
SSA as a discrete event simulation (DES) and leverages optimistic approaches for parallel
DES (PDES).13–18 In contrast to prior work, our parallel SSA algorithm takes advantage
of more of the parallelism inherent in large reaction networks, exactly synchronizes changes
to the species population state that is shared among components of the algorithm, and,
assuming that random number generators are properly managed, can exactly reproduce the

2

predictions of a sequential SSA algorithm.

II. THE STOCHASTIC SIMULATION ALGORITHM

A. A summary of SSA

SSA solves the following problem. Consider a well-mixed container of chemical species,
the chemical reactions that transform them, and a rate law for each reaction that provides its
execution rate as a function of the species populations. Given an initial state of this system,
one can model the dynamic probability that it occupies any population state by represent-
ing state transition probabilities as a system of coupled differential equations. Although
this formulation, known as the Chemical Master Equation, is exact, it is not tractable for
biologically interesting models because the state space is prohibitively large.

The Stochastic Simulation Algorithm models the dynamical behavior of this system by
computing a sequence of reaction executions, choosing reactions and execution times so
that the probability of generating a given trajectory equals the probability that would be
provided from a solution of the Chemical Master Equation.

An algorithm for SSA, known as the Direct Method, was provided by Gillespie.1

1: procedure SSA Direct Method

2: Set initial species populations

3: t← 0 . simulation time

4: τ, µ← Plan next reaction execution

5: while t+ τ ≤ max simulation time do

6: t← t+ τ

7: Update species populations according to reaction µ

8: τ, µ← Plan next reaction execution

9: end while

10: end procedure

11: function Plan next reaction execution

12: for r in reactions do

13: Compute the rate (propensity) for r, ar
14: end for

15: a0 ←
∑
r ar . the total propensity

16: . let U() randomly sample the standard uniform distribution

17: τ ← (1/a0) ln(1/U()) . τ is the time the next reaction executes

18: Choose µ by sampling P [µ] = aµ/a0 . µ is the next reaction

19: return τ, µ

20: end function

Detailed derivations for the Direct Method1,2,19–21 rely on a key assumption of the Direct
Method—that propensities ar remain constant in between reaction executions (equation (1)
in 21).

We use the Direct Method for pedagogical purposes in this paper, but base our parallel
SSA algorithm on an optimized SSA algorithm, the Next Reaction Method.19

3

III. INTRODUCTION TO PARALLEL SSA

This section provides an overview of the parallel SSA algorithm.

A. Objectives

The parallel SSA algorithm we present has two primary objectives.

1. Speed up the performance of SSA on a large reaction network by partitioning the
network into multiple sub-networks and integrating the sub-networks in parallel.

2. Exactly simulate reaction networks, so that the results of a parallel simulation are
the same as the results of a sequential simulation. This objective is satisfied by the
parallel SSA algorithm presented below.

B. Opportunities for parallelism

A reaction network in a large biochemical model like a whole-cell model provides two
types of opportunities for parallelism. First, the sub-networks of reactions in separate com-
partments may be sufficiently decoupled from each other that they can be simulated in
parallel. The amount of a compartment’s coupling is measured by the mean sum of the
rates of its reactions that exchange species with other compartments, relative to the mean
sum of the rates of all reactions in the compartment. Multiple prior studies have taken
this approach to parallelize SSA.22–26 Second, reactions within a compartment may also be
partitioned into sub-networks that are sufficiently decoupled that they can be simulated in
parallel.

These two types of potential parallelism are complementary and can be combined in
a single parallelization. Our parallel SSA approach below abstracts away the distinctions
between them and simply partitions a reaction network into sub-networks. Nevertheless, we
note these opportunities for parallelism because prior work has leveraged the first one, and
this discussion may help readers develop intuition for parallel SSA.

C. Overview of the parallel SSA approach

To provide an overview of the parallel SSA algorithm we briefly summarize its high-level
steps, broken down into its parallelization and simulation phases.

Parallelize

1. Read a model to simulate, including its reactions and rate laws.

2. Generate a graph G that characterizes the dependencies among reactions and species
in the model.

3. Partition G into sub-networks of reactions that will be simulated in parallel.

4. Identify the species that are shared between multiple sub-networks of reactions, and
partition them.

4

Simulate

1. Read a simulation configuration for the model, including the initial populations of
species and other initial conditions, and a maximum simulation time.

2. Instantiate an optimistic object-oriented (OO) parallel discrete event simulation
(PDES) environment on a parallel computer.14–18,27–31

3. Map each reaction sub-network of G onto an SSA simulation object in the optimistic
PDES environment, instantiate the object, and send it an initialization event message.

4. Map each set of shared species onto a Shared Species Population (SSP) simulation
object in the PDES environment, instantiate the object and send it an initialization
event message.

5. Initialize all other objects in the simulation.

6. Run the parallel SSA simulation.

These steps and components are thoroughly described below.

IV. THE PARALLEL SSA ALGORITHM

This section presents the concepts underlying the parallel SSA algorithm.

A. Transforming a reaction network into a parallel simulation

1. Encode the reaction network’s dependencies into a directed graph

Let R and S represent all reactions and species, and ri, sj, and lk represent individual
reactions, species and rate laws, respectively. We map the dependencies between these
components onto a bipartite directed graph G(v, e), where v = R

⋃
S. G is constructed

as follows. A directed edge (sj, ri) is added to G if species sj participates in rate law li,
thereby encoding the dependency of reaction ri on species sj. Similarly, a directed edge
(ri, sj) is added to G if sj has a non-zero stoichiometry in reaction ri, thereby encoding
the dependency of sj on reaction ri that arises because executing reaction ri changes the
populations of species sj. Figure 1 illustrates G for a small example network.

2. Partition the dependency graph

To identify reaction network components that can be simulated in parallel, we partition
G into two types of sub-networks. The first type of sub-network contains reactions, and
all of the species that participate only in reactions in the sub-network1 (e.g., see partitions
α and β in in Figure 2). The species contained in a reaction sub-network are called local

1 More precisely, these are the species connected in G to reactions in the sub-network and not connected

to any other reactions.

5

Species

Reactions

r1: A + B → C @ k1 A B
r2: C + D → E + F + D @ k2 C D
r3: F + F → G @ k3 F(F-1)

Reactions Species

r1

r2

r3

A

B

C

D

E

F

G

Reaction depends on
and changes species

Species changed
by reaction

Reactions

Reaction depends
on species

FIG. 1. Relationships between reactions and species encoded in dependency graph G. The rela-

tionships between reactions and species are encoded in a directed graph whose nodes are reactions

and species. Directed edges indicate data dependencies. An edge from a reaction and its rate

law to a species indicates that executing the reaction changes the species’ population. An edge

from a species to a reaction indicates that the reaction’s rate law uses the species’ population. For

example, G contains an edge from enzyme D to reaction r2 because the rate law for r2 is a function

of the population of enzyme D. Bi-directional edges indicate both of these dependencies.

The @ signs in the list of reactions separate each reaction from its rate law, a mathematical ex-

pression that computes the rate at which the reaction executes. In a rate law a species symbol

represents the number of molecules of the species in the container being simulated.

species, because they’re used only by the reactions in their local sub-network. For example,
in Figure 2 species A and B are local to sub-network α.

The second type of sub-network created by a partition contains only shared species, which
are used by reactions in two or more reaction sub-networks.

3. Designing the partitioning algorithm

The goal of the partitioning algorithm is to identify partitions into sub-networks that
can be rapidly simulated in parallel. In the near-term, we plan to use linkage clustering
algorithms to partition the dependency graph G. Intuitively, this will minimize the number
of state changes that would need to be synchronized between the DES objects which are
encoded into the sub-networks.

Long-term, we aim to develop an algorithm for identifying the optimal partitioning that
minimizes the expected run-time on a parallel computer. Due to the challenges to analyzing
the expected run-time of a parallel SSA simulation, the optimal partitioning will likely need

6

be to identify empirically by testing the performance of putative partitionings.

4. Encoding the reaction network into simulation objects

The two types of sub-networks produced by a partition are mapped into two types of
DES objects.

Each sub-network of reactions defines the reactions that are integrated by one OO DES
object that simulates SSA, called an SSA object. For example, in Figure 2 SSA object
α integrates reaction r1 and stores local species A and B, while SSA object β integrates
reactions r2 and r3 and stores local species D, E, F , and G.

Each sub-network of shared species is mapped into one OO DES Shared Species Pop-
ulation (SSP) object which will coordinated the populations of the shared species during
a simulation. For example, in Figure 2 shared species C is stored in an SSP object and
is used by reactions r1 and r2, which are executed by two different SSA objects, α and β,
respectively.

r1

r2

r3

A

B

C

D

E

F

G

SSA object α

A, B

SSP object

C

r1

SSA object β

D, E, F, G

r2, r3

Interactions between
simulation objects

α

β

FIG. 2. A partition of the dependencies illustrated in Figure 1. The dependency graphG in Figure 1

is partitioned into two reaction sub-networks, α and β, and 1 shared species sub-network. These

are then mapped onto the SSA objects α and β, and an SSP object. In this small network each

SSA object interacts with the SSP object, but in reaction networks suitable for parallel execution

by parallel SSA, each SSA object would interact with a small fraction of the SSP objects, and vice

versa.

B. Architecture of parallel SSA

This parallel SSA algorithm has been designed to run as a parallel OO DES application on
top of an optimistic PDES simulator.13,14,16–18,27,28,30,32 The major advantage of this approach
is that the optimistic PDES simulator will be responsible for running the objects in the
parallel SSA algorithm in simulation time order. The major types of simulation objects in
parallel SSA will be the SSA and SSP classes defined above. In addition, other utility classes
will be added, such as classes for initialization and for checkpointing model predictions.

7

V. THE PARALLEL SSA ALGORITHM

This section presents our approach for an exact parallel SSA algorithm. We begin by
restructuring SSA as an OO DES application and defining the structure of DES application
classes. In sub-section V B we illustrate the features and components of the algorithm,
which we follow with a sub-section containing pseudocode for its classes. The final sub-
section describes how the algorithm handles compartments.

A. Structure SSA as an object-oriented discrete event simulation application

Many variations of the SSA algorithm have been published, beginning with two in Gille-
spie’s original paper.1 SSA variations have the characteristics of a DES application. First,
their events, which simulate reaction executions, occur at a discrete time instants. And,
second, these events are dynamically scheduled by computations at earlier simulation times.
But published SSA variations do not use DES because they’re written as free-standing al-
gorithms.

Since an optimistic parallel OO DES simulator will be used to synchronize the parallel
SSA algorithm, we begin the discussion of synchronization by recasting the Direct Method
(presented in section II A) as an OO DES application. This implementation of the Direct
Method OO DES class executes two event methods, Initialize Direct Method and Execute
and schedule reaction:

1: Event method Initialize Direct Method(0, self, self, initial populations, max simulation time)

2: Set initial species populations

3: tm ← max simulation time

4: . Call Direct Method function defined in section II A

5: τ, µ← Plan next reaction execution()

6: send Execute and schedule reaction(τ , self, self, µ)

7: end Event method

8: Event method Execute and schedule reaction(t, self, self, µ)

9: if t ≤ tm then

10: Update species populations according to reaction µ

11: τ, µ← Plan next reaction execution()

12: send Execute and schedule reaction(t+ τ , self, self, µ)

13: end if

14: end Event method

All OO DES application objects interact exclusively through event messages, a strict
interface that makes it possible for parallel OO DES simulators to execute them.

As illustrated by this pseudo-code for the Direct Method class, all DES event messages
in this paper have the form

Message type(time, sender, receiver, [arguments]),
where Message type is the type of the message, time is the simulation time at which the
message will be received and executed, sender identifies the simulation object that sends
the message, receiver identifies the simulation object that will receive the message, and the
optional arguments are data carried by the message from its sender to its receiver.

The algorithm for a DES application class is defined by its message handler event meth-
ods, whose names and signatures must exactly match the types and fields of messages

8

received by the class, although the handler method names are written in small caps to
distinguish them from the messages. Throughout the execution of a handler the simulation
time of the receiver object handling an event message is automatically time.

B. An exact parallel SSA algorithm

This section presents an algorithm that focuses on the key logic needed to exactly paral-
lelize SSA. Performance optimizations for the algorithm follow in section VI A.

The exact parallel SSA algorithm is a parallel OO DES application that executes two
class types, SSA objects and Shared Species Population (SSP) objects. Updates and reads
of local species stored in SSA objects always occur at the correct simulation times, so we
focus on shared species. To exactly synchronize shared species, updates and reads of their
populations must also occur at the correct times. More specifically, all updates to shared
species populations by a reaction must change the populations in SSP objects at the time
the reaction executes. And when an SSA object uses a shared species at time t it must
obtain the SSP’s value for the species’ population at t.

Correct timing of updates and reads of shared species populations is achieved by explicitly
accessing shared species at SSP objects. When a reaction executed by an SSA object updates
the population of a shared species, the object updates the population at the SSP by sending
an Adjust populations message to the SSP. And the SSP handles an Adjust populations
message by sending a zero-delay Populations message to each SSA object that uses the
shared species which were updated in the Adjust populations message.

Table I lists these messages and Figure 3 illustrates their dynamics. The interactions
between SSA object α and the SSP over the time interval t1 to t3 (see section A of Figure 3)
execute one reaction, r1. At time t1 three event messages are sent to schedule the reaction
and the parallel coordination it requires:

TABLE I. Event message types used by Parallel SSA

Message

type

Sender

object

type

Receiver

object

type

Arguments (not in-

cluding the required ar-

guments time, sender,

and receiver)

Parallel SSA semantics and re-

ceiver object action

Execute reac-

tion

SSA SSA µ Execute reaction µ

Schedule

reaction

SSA SSA Schedule the next reaction

Adjust popu-

lations

SSA SSP pop changes Convey the stoichiometry of a re-

action’s shared species to the SSP,

which updates their populations

Populations SSP SSA shared species pops Provide populations of the re-

quested species to the SSA

• Execute reaction schedules the execution of r1 at SSA α at t3. Every reaction execution
requires this message.

9

t1

t3

t4

t2

t5

Time
SSA

object α
SSP

object storing C
SSA

object β

Execute
reaction(t4, s, r, μ)

Execute
reaction(t3, s, r, r1)

Schedule
reaction(t4, s, r)

Adjust populations(t4, s, r)

Populations(t3, s, r, C: new_C)

Adjust populations
retraction

Execute
reaction

retraction

Schedule
reaction

retraction

Adjust populations(t3, s, r, C += 1)

Schedule
reaction(t3, s, r)

Populations(t3, s, r, C: new_C)

A: Execution of one reaction with SSP coordination

B: Update to shared species leads to retraction of planned reaction

FIG. 3. Example event message interactions between SSA and SSP objects. To conserve space, the

event message fields time, sender, receiver are abbreviated ti, s, r. A: The interactions between

SSA object α and the SSP show the messages involved in a single reaction execution coordinated

with the SSP, as described in section V B. B: The Populations message that updates the population

of shared species C at SSA object β at time t3 causes SSA β to cancel its planned execution of

reaction µ at time t4, as discussed in section V B 1. Each retraction message is indicated by a

dashed arrow that has the same color as the message being retracted, and points to the same

object at the same time as it does.

• Schedule reaction causes SSA α to schedule the next reaction. Every reaction execution
requires this message.

• Adjust populations schedules the SSP to increment the population of C at t3, as per
the stoichiometry of reaction r1. Every reaction execution that changes the population
of shared species requires this message.

At time t3, in response to the Adjust populations message, the SSP sends a Populations
message that contains the shared populations to SSA α.

The algorithms that send and handle these messages are detailed in sections V C 1 and
V C 2.

1. Handling updates to shared species used by rate laws

A fundamental assumption SSA is that the propensities2 ak(X(t)) are constant except
when reaction executions change species counts (equation (1) in.21)3 Parallel SSA revises
this assumption by adding that propensities can also change when the populations
of shared species used by propensities are updated. Changes external to an SSA
object can thus invalidate the computation that scheduled a reaction execution.

2 The standard notation ak(X(t)) indicates the propensity of reaction k—computed using k’s rate law—as

a function of the species populations at time t, X(t).
3 Some SSA algorithms model time-varying propensities, for example to simulate containers with varying

volume, as in section V of21.

10

Figure 3 illustrates this situation in the interactions among 2 SSA objects and an SSP
object. Focus on the SSP and SSA object β over the time interval t2 to t5 (section B of
Figure 3):

1. At time t3, in response to the Adjust populations it received from SSA α, the SSP
sends a Populations message that updates the population of shared species C at SSA
β.

2. At t3 SSA β receives the message, updates the population of species C, determines that
the population of C was used by the propensity calculations made when scheduling
its pending reaction µ, and concludes that the assumption made when scheduling µ—
that the propensities calculated at time t2 would remain constant until time t4—no
longer holds. Thus, SSA β must now cancel the scheduled execution of reaction µ,
and reschedule its next reaction.

3. SSA β cancels each of the messages it sent at t2 to schedule the execution of reaction
µ by sending a corresponding retraction message at t3 (see the three messages labeled
retraction and indicated by dashed arrows in Figure 3). Retraction messages33 are
application messages that completely cancel the effects of a corresponding retracted
message, including the possible execution of the retracted message and that execution’s
side effects. They are a fully developed feature of the Virtual Time .17,27,34 optimistic
parallel synchronization theory which is implemented by Time Warp optimistic PDES
simulators14,16

4. SSA β now reschedules its next reaction, which Figure 3 illustrates as executing at
time t5.

The algorithms for the parallel SSA classes that implement these actions are detailed in
the next section.

C. Class algorithms for parallel SSA

This section presents event methods for the SSA and SSP classes that implement the
parallel SSA algorithm. To simplify this section’s presentation all shared species are stored
in a single SSP object, and we consider a system with only one biological compartment,
corresponding to a well-mixed container in the stochastic simulation’s analytic framework
.1 These limitations are relaxed in section VI A below.

1. The SSP class

An SSP object executes two types of events: Initialize initializes the SSP, and Adjust
populations updates the populations of specified shared species.

1: Event method Initialize(0, self, self, initial populations, species locs)

2: . initialize initial populations of all shared species

3: self.populations = initial populations

4: self.SSA map = species locs . map shared species to their SSAs

5: end Event method

11

1: Event method Adjust populations(time, SSA obj, self, pop changes)

2: add the changes in pop changes to self.populations

3: . send updated populations to SSAs that depend on them

4: for SSA in self.SSA map do

5: shared species pops = empty dictionary

6: for species in pop changes do

7: if species in self.SSA map[SSA] then

8: shared species pops[species] = self.populations[species]

9: end if

10: end for

11: if shared species pops then

12: send Populations(time, self, SSA, shared species pops)

13: end if

14: end for

15: end Event method

Adjust populations adjusts the populations of shared species in self.populations by the
changes in pop changes. In lines 4–14 the SSP acts like a write-through cache, forward-
ing updated shared species population values to the SSAs executing reactions that use the
species in their rate laws.

2. The SSA class

This section defines the algorithms used by the SSA class. We adapt Gibson and Bruck’s
Next Reaction Method (NRM)19,21 to determine the reactions that execute and their execu-
tion times. However, to simplify the presentation we do not incorporate NRM’s optimization
that avoids recomputing propensities which do not depend on changed species populations.
Instead, in section VI A we identify it as an optimization that should be added to the algo-
rithm.

An SSA object executes four types of event methods. They correspond 1-to-1 to the
messages illustrated in Figure 3 and described in section V B: Initialize initializes the object4,
Schedule reaction schedules the next reaction, Execute reaction executes a reaction, and
Populations receives updated values for the populations of the shared species used by the
SSA object.

1: Event method Initialize(0, self, self, reactions, initial populations)

2: self.reactions = reactions . reactions and their rate laws

3: self.local species = initial populations['local species']
4: self.cached shared species = initial populations['shared species']
5: self.SSP = the single SSP

6: self.next rxn.time = 0 . self.next rxn tracks a pending reaction

7: self.next rxn.reaction = ∅
8: µ, τµ = Select initial reaction(self)

9: Send reaction events(µ, τµ, self)

10: end Event method

4 Note that the Execute and schedule reaction event method used by the SSA class presented in section V A

has been decomposed into two event methods, which is required by the reasoning at the end of sec-

tion V D 1.

12

Initialize only runs once, at time 0.

1: function Select initial reaction(self)

2: . Select the first reaction, saving propensities and times

3: for k in self.reactions do

4: self.ak = ak = propensity for k

5: rk = uniform(0, 1) random number

6: self.τk = τk = (1/ak) ln(1/rk) . execution time for k

7: end for

8: µ = k that satisfies mink{τk} . Select next reaction

9: return µ, τµ
10: end function

To support the event-driven model of OO DES, the reaction scheduling code must be
separated into a different function for each event. Each function determines and returns the
next reaction to execute, µ, and the time when it will execute, τµ. The first such function,
Select initial reaction, which is called by Initialize, is mathematically equivalent to
the initialization of NRM (lines 2–5 of Alg. 2 in 21).

1: function Send reaction events(µ, τµ, self)

2: send Execute reaction(τµ, self, self, µ)

3: send Schedule reaction(τµ, self, self)

4: species changes = shared species with stoichiometry 6= 0 in µ

5: if species changes then

6: send Adjust populations(τµ, self, self.SSP, species changes)

7: end if

8: self.next rxn.reaction = µ

9: self.next rxn.time = τµ
10: end function

The Send reaction events function sends all of the event messages transmitted by in
SSA object. It is called by each of the three event methods that send messages. Each call
sends all the messages associated with the execution of one reaction. Lines 11–12 record the
reaction and its execution time for later use.

1: Event method Schedule reaction(t, SSA obj, self)

2: . Schedule a reaction after executing one

3: µ = self.next rxn.reaction

4: µ, τµ = Select after reaction execution(self, t, µ)

5: Send reaction events(µ, τµ, self)

6: end Event method

7: function Select after reaction execution(self, t, µ)

8: . Select next reaction after executing µ; update self.ak and self.τk
9: s = self

10: for k in self.reactions do

11: ak = new propensity for k

12: if k 6= µ then

13: self.τk = τk = s.ak
ak

(s.τk − t) + t

14: end if

15: end for

13

16: rµ = uniform(0, 1) random number

17: self.τµ = τµ = (1/ aµ) ln(1/rµ)

18: µ = k that satisfies mink{τk} . Select next reaction

19: for k in self.reactions do

20: self.ak = ak
21: end for

22: return µ, τµ
23: end function

Schedule reaction implements a DES version of the body of the NRM’s iterative loop.

Select after reaction execution, which selects the next reaction after a reaction
executes, is mathematically equivalent to the code in NRM’s iterative loop (lines 5 and 7–10
of Alg. 2 in 21).

1: Event method Populations(t, SSP obj, self, shared species pops)

2: self.cached shared species = shared species pops

3: if time ¡ self.next rxn.time then

4: . Cancel next reaction and schedule again

5: Cancel scheduled reaction(self)

6: µ, τµ = Select after reaction cancellation(self, t)

7: Send reaction events(µ, τµ, self)

8: end if

9: end Event method

10: function Cancel scheduled reaction events(self)

11: . Cancel events related to the execution of reaction self.next rxn

12: µ = self.next rxn.reaction

13: τµ = self.next rxn.time

14: retract Execute reaction(τµ, self, self, µ)

15: retract Schedule reaction(τµ, self, self)

16: species changes = shared species with stoichiometry 6= 0 in µ

17: if species changes then

18: retract Adjust populations(µ, self, self.SSP, species changes)

19: end if

20: end function

21: function Select after reaction cancellation(self, t)

22: . Select next reaction after cancellation, updating self’s ak and τk
23: s = self

24: for k in self.reactions do

25: ak = new propensity for k

26: self.τk = τk = s.ak
ak

(s.τk − t) + t

27: end for

28: µ = k that satisfies mink{τk} . Select next reaction

29: for k in self.reactions do

30: self.ak = ak
31: end for

32: return µ, τµ
33: end function

14

Populations records updated populations for the shared species used by an SSA object’s
rate laws. If a future reaction is pending then it must be cancelled and reaction scheduling
must be redone, as previewed in section V B 1 above. This novel aspect of the parallel SSA
algorithm is handled by a pair of functions: Cancel scheduled reaction events cancels
all of the events related to the previously scheduled reaction, and Select after reaction
cancellation then selects the next reaction to execute. In the former function, each
“retract Event message” operation sends a retraction message that cancels the previously
sent Event message.

Select after reaction cancellation schedules the next reaction. We adapt the
NRM to determine the reaction times. Because no reactions have executed since propensities
were last calculated, all reactions—including the one that was cancelled—can be treated like
the reactions that did not execute in the iterative NRM loop (see lines 4–9 of Alg. 2 in 21).
Thus, lines 27–31 of Select after reaction cancellation calculate a new propensity
and execution time for each reaction, and select the reaction with the minimum time. No
random numbers are needed.

1: Event method Execute reaction(t, SSA obj, self, µ)

2: update self.local species according to the stoichiometry of µ

3: end Event method

Execute reaction updates the local species populations according to the stoichiometry of
the reaction being executed.

D. Correctness of the parallel SSA algorithm

The algorithms for the SSP and SSA class methods define an exact parallel SSA algorithm
because they maintain these invariants:

Read timing: Propensity calculations read species populations at the correct times.

Write timing: Updates to species populations are performed at the correct times.

Static propensities: The propensities used to schedule every reaction that executes re-
main constant between the time they are computed and the reaction’s execution.

We consider only shared species, since locally stored species are trivially read and updated
at the correct times. Read timing holds because the most recent populations of all shared
species are used to calculate each propensity: whenever the SSP storing a shared species
receives an Adjust populations message it responds by sending a zero-delay Populations
message to each SSA object that uses the shared species which were updated in the Adjust
populations message. Write timing holds because the populations of all shared species
modified by a reaction are updated at the SSP via an Adjust populations message that
is executed at the time the reaction executes. And Static propensities holds because
whenever a species population used by a propensity calculation changes, the reaction that
depends on the change is cancelled and scheduling is redone, as performed in lines 5–7 of
Populations .

However, one final issue must be resolved to complete this informal correctness proof.
The dependencies among simultaneous SSA event messages need to be addressed. The next
sub-section defines these dependencies and describes how the parallel SSA algorithm ensures
that simultaneous event messages execute in the correct order.

15

1. Dependencies among simultaneous parallel SSA event messages

When a reaction executes all four event messages associated with the reaction execute
at the simulation time of the reaction (see section A of Figure 3). To achieve correctness
parallel SSA must control the execution order of simultaneous event messages. Specifically,
they should be executed in an order consistent with the logic of sequential SSA. This section
presents the rationale for that order, and the simulation mechanisms that achieve the order.

Figure 4 illustrates logical dependency relationships between simultaneous parallel SSA
event messages. These reasons explain the dependencies in Figure 4:

1. Populations is a response to Adjust populations, so Adjust populations must execute
before Populations.

2. Populations must follow Execute reaction so that species populations are not altered
before Execute reaction is executed.

3. Populations must precede Schedule reaction so that Schedule reaction sees fully up-
dated populations, as occurs in sequential SSA algorithms.

Execute reaction

Populations

Schedule reaction

Adjust populations 1

2

3
Events executed
by SSP objects

Events executed
by SSA objects

FIG. 4. Dependencies among simultaneous parallel SSA events associated with a single reaction

execution. A directed edge from event message x to event message y means that the event that

executes message x must occur before the event that executes message y. The rationale for each

directed edge is provided in the text.

Parallel SSA achieves the ordering presented in Figure 4 in two levels. First, globally at
any instant of time SSP objects must execute before SSA objects, as the alternative would
be inconsistent with the dependencies in Figure 4.5 And second, locally within each object
type, messages must execute in the fully determined order shown in Figure 4.

Two standard PDES mechanisms can implement these two levels of ordering. Globally,
simultaneous events at different PDES objects can be ordered by controlling a sub-time of
the simulation time. SSP objects can be forced to execute before SSA objects when they
execute simultaneously by always giving SSP objects a smaller sub-time than SSA objects.

5 All simultaneous messages received by an object at a given simulation time must be passed to the object

as an event message set.34 Therefore, SSPs must precede SSAs at a given time to ensure that Adjust

populations executes before Populations.

16

Locally, within a single simulation object the execution of simultaneous event messages must
be ordered. To implement the ordering above SSA objects must execute their events in this
order: Execute reaction, Populations, Schedule reaction. This ordering is straightforward to
achieve. For example, a sequential OO DES engine called DE Sim that we wrote provides
declarative support for controlling the execution order of simultaneous events.35

The requirement that Populations executes between Execute reaction and Schedule reac-
tion forces parallel SSA to logically distinguish the event that executes a reaction from the
event that schedules the next reaction.

E. Compartments

Multiple compartments are fully supported by the parallel SSA algorithm. Consider a
system with two adjacent compartments, c1 and c2, and a single exchange reaction x that
transfers a species from c1 to c2. Letting the species being transferred be named s[c1] and s[c2]
in c1 and c2, respectively, reaction x can simply be s[c1]→ s[c2]. Let the reactions contained
in c1 and c2 be mapped to SSA objects S1 and S2 respectively, with S1 executing reaction x
and s[c2] a shared species used by both S1 and S2. When x executes, the population of s is
decremented in c1 and incremented in c2.

This exchange reaction is naturally handled by the parallel SSA algorithm. Since S1

executes x, the population change in S1 occurs at the time x executes, and the Static
propensities invariant holds in S1.

SSA object S2 will receive a Populations message at the time x executes, which will cause
S2 to cancel its pending reaction and redo reaction scheduling, as performed by lines 5–8
of the Populations event method. Therefore, the Static propensities invariant holds in
S2 as well, and the parallel SSA algorithm handles reactions that transfer species between
compartments.

Since each reaction execution is independent, this analysis extends to multiple exchange
reactions between a pair of adjacent compartments, and to many compartments.

Lastly, we note that an exact sequential SSA simulation of a system containing multiple
compartments must use an approach similar to ours because it will simulate each compart-
ment independently and cannot be exact unless it cancels reactions which are interrupted
by exchange reactions. However, unlike this parallel algorithm, it will not need to handle
cascading cancellations.

F. Practical considerations for the PDES simulator

The parallel SSA algorithm application employs several features that must be supported
by the OO PDES simulator on which it runs. First, because Populations is a zero-delay
message17,34 these must be allowed by the simulator. Second, the Cancel scheduled
reaction events function uses a “retract Event message” operation to send a retrac-
tion message that cancels a previously sent Event message. Retraction messages.33,34 are
supported by the ROSS optimistic PDES simulator14,36

17

VI. OPTIMIZATIONS AND EVALUATION

A. Optimizing parallel SSA

Multiple optimizations should be incorporated into the parallel SSA algorithm to improve
its performance. These are all exact.

• Multiple SSP objects should be employed so that a) they can share computational
load, and b) shared species can be mapped to SSP objects that are located on a
parallel computer near the SSA objects that use them.

• The optimization introduced by NRM that recomputes only propensities which depend
on species populations that have changed should be incorporated.19 In parallel SSA,
when a reaction executes these species are given by the union of the species with non-
zero stoichiometry in the reaction with the shared species whose populations have been
updated. When a reaction is cancelled, they are given by the updated species provided
by the Populations message that triggered the cancellation. This optimization should
be implemented using the indexed priority queue P defined in.19 This requires that
SSPs track the shared species population updates which have not been received by
each SSA.

• Unnecessary data in Populations messages can be avoided by having SSA objects
record updates to shared species locally and having SSPs not send an update to a
shared species back to the SSA that reported the update. If all data in a Populations
message is unnecessary, the message need not be sent.

These optimizations are all straightforward to implement.

In addition to these exact optimizations, approximate optimizations should also be con-
sidered.

B. Evaluation

While quantitative performance results are not available because parallel SSA has not
been implemented yet, the parallel SSA algorithm achieves these conceptual objectives.
It offers a method to accelerate SSA without sacrificing accuracy by partitioning reaction
networks and simulating sub-networks in parallel on a supercomputer. In addition, it aims
to reduce simulation run-times by maximizing the number of sub-networks in a simulation
while minimizing the cost of synchronization.

The parallel SSA algorithm also faces several challenges. Partitioning will be performed
on a static reaction network, whereas the characteristics of the network and its sub-networks
will likely vary over the duration of a simulation. The performance of a parallel SSA simula-
tion will depend on the rate of updates to shared species, and fraction of those updates that
cause reactions to be cancelled. A partitioning algorithm that accurately estimates these
rates needs to be developed.

18

VII. NEXT STEPS

Much additional work must be completed before parallel SSA can become a standard
tool for accelerating the simulation of large biochemical models. We plan these next steps.

• Implement the algorithm: Select a PDES simulator to use as a foundation, and im-
plement the SSA algorithm and the optimizations from section VI A as an DES appli-
cation that runs on the simulator.

• Implement partitioning: Develop a reaction-network partitioning algorithm. In addi-
tion, a related algorithm is needed to map SSA and SSP objects to processors and
cores in a supercomputer when a parallel SSA simulation in initialized.

• Evaluate the implementation’s performance: We will develop a benchmark reaction
network, obtain a fast sequential SSA implementation such as37, and evaluate parallel
SSA’s relative speedup. Initial construction has begun on a configurable generator of
synthetic reaction networks.

• Integrate parallel SSA into a user-friendly modeling environment: a comprehensive
environment for modeling whole-cells and other large networks needs a modeling lan-
guage, a simulation experiment language, and a format for simulation results.5

• Combine parallel SSA with other integration algorithms in a multi-algorithmic simula-
tor: because different pathways in cells are characterized at different levels, whole-cell
models must be simulated with multiple integration algorithms, including dynamic
Flux Balance Analysis and ODEs along with SSA.5 To achieve this, we will merge
parallel SSA with an existing multi-algorithmic simulator.

VIII. CONCLUSIONS

We make important progress toward using parallelism to accelerate the Stochastic Simula-
tion Algorithm (SSA) by presenting the first exact parallel algorithm for SSA. The algorithm
parallelizes SSA with no loss of accuracy by partitioning a reaction network into multiple
sub-networks that are simulated by independent but coordinated SSA instances. It exactly
synchronizing accesses to species populations shared by the instances, and cancels pending
reactions that are interrupted by population updates that invalidate prior propensity cal-
culations. To recover from reaction cancellations the algorithm employs a modified Next
Reaction Method19 approach. All concurrent synchronization, including event timing, re-
action cancellation and rollback, is achieved by leveraging the existing synchronization in
optimistic parallel DES simulators. This will make the parallel SSA algorithm easier to
implement and deploy. In addition, the algorithm exactly simulates systems that contain
multiple compartments and transfer species between them. We present a plan for imple-
menting, optimizing and evaluating it.

A high-performance, production parallel SSA algorithm would help enable simulations of
comprehensive models of the entire biochemistry of cells, which would advance the treatment
of disease and the engineering of useful microbes.

19

ACKNOWLEDGMENTS

This worked was supported by National Science Foundation award 1649014 and National
Institutes of Health award R35GM119771 to J.R.K. We appreciate insightful comments from
Robert Clayton Blake at Lawrence Livermore National Laboratory.

REFERENCES

1D. T. Gillespie, The journal of physical chemistry 81, 2340 (1977).
2D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
3T. Maier, A. Schmidt, M. Güell, S. Kühner, A.-C. Gavin, R. Aebersold, and L. Serrano,
Molecular systems biology 7 (2011).

4J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Science 311, 1600 (2006).
5A. P. Goldberg, B. Szigeti, Y. H. Chew, J. A. Sekar, Y. D. Roth, and J. R. Karr, Current
opinion in biotechnology 51, 97 (2018).

6B. Szigeti, Y. D. Roth, J. A. Sekar, A. P. Goldberg, S. C. Pochiraju, and J. R. Karr,
Current opinion in systems biology 7, 8 (2018).

7J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival Jr,
N. Assad-Garcia, J. I. Glass, and M. W. Covert, Cell 150, 389 (2012).

8A. P. Goldberg, Y. H. Chew, and J. R. Karr, in Proceedings of the 2016 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (2016) pp. 259–262.

9V. H. Thanh, C. Priami, and R. Zunino, The Journal of chemical physics 141, 10B602 1
(2014).

10D. T. Gillespie and L. R. Petzold, The Journal of Chemical Physics 119, 8229 (2003).
11A. Auger, P. Chatelain, and P. Koumoutsakos, The Journal of chemical physics 125,

084103 (2006).
12D. T. Gillespie, The Journal of chemical physics 115, 1716 (2001).
13R. Fujimoto, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304)
1, 147 (2000).

14C. Carothers, D. Bauer, and S. Pearce, Proceedings Fourteenth Workshop on Parallel and
Distributed Simulation 62, 53 (2000).

15C. D. Carothers and K. S. Perumalla, in Proceedings of the 2010 Winter Simulation Con-
ference (IEEE, 2010) pp. 678–687.

16D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. DiLoreto, in Proceedings of the
eleventh ACM Symposium on Operating systems principles (1987) pp. 77–93.

17D. R. Jefferson and P. D. Barnes, Jr, in 2017 Winter Simulation Conference (WSC) (IEEE,
2017) pp. 786–797.

18E. Mikida, N. Jain, L. Kale, E. Gonsiorowski, C. D. Carothers, P. D. Barnes, Jr, and
D. Jefferson, in Proceedings of the 2016 ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation (2016) pp. 99–110.

19M. A. Gibson and J. Bruck, The journal of physical chemistry A 104, 1876 (2000).
20Y. Cao, D. Gillespie, and L. Petzold, Journal of Computational Physics 206, 395 (2005).
21D. F. Anderson, The Journal of chemical physics 127, 214107 (2007).
22M. Jeschke, R. Ewald, A. Park, R. Fujimoto, and A. M. Uhrmacher, ACM SIGMETRICS

Performance Evaluation Review 35, 22 (2008).
23T. Mazza, P. Ballarini, R. Guido, and D. Prandi, IEEE/ACM transactions on computa-

tional biology and bioinformatics 9, 911 (2012).

20

http://dx.doi.org/10.1109/PADS.2000.847144
http://dx.doi.org/10.1109/PADS.2000.847144

24L. Dematté and T. Mazza, in International Conference on Computational Methods in
Systems Biology (Springer, 2008) pp. 191–210.

25B. Wang, Y. Yao, Y. Zhao, B. Hou, and S. Peng, in 2009 International Workshop on High
Performance Computational Systems Biology (IEEE, 2009) pp. 91–100.

26M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-Schulten, Parallel computing
40, 86 (2014).

27D. R. Jefferson, ACM Transactions on Programming Languages and Systems 7, 404 (1985).
28P. D. Barnes, Jr, C. D. Carothers, D. R. Jefferson, and J. M. Lapre, in SIGSIM-PADS’13

(Association for Computing Machinery, Montrèal, 2013) pp. 327–336.
29C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, ACM Transactions on Modeling

and Computer Simulation (TOMACS) 9, 224 (1999).
30M. Schordan, D. Jefferson, P. D. Barnes, Jr, T. Oppelstrup, and D. Quinlan, in Interna-
tional Conference on Reversible Computation (Springer, 2015) pp. 95–110.

31E. Mikida and L. Kale, in Proceedings of the 2018 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation (2018) pp. 189–200.

32R. M. Fujimoto, Communications of the ACM 33, 30 (1990).
33G. Lomow, S. R. Das, and R. M. Fujimoto, ACM Transactions on Modeling and Computer

Simulation (TOMACS) 1, 219 (1991).
34D. R. Jefferson and P. D. Barnes, Jr, “Virtual time iii, part 1: Unified virtual time syn-

chronization for parallel discrete event simulation,” (2020), submitted.
35A. P. Goldberg, “Python framework for discrete event simulation,” (2020).
36M. Schordan, T. Oppelstrup, D. Jefferson, P. D. Barnes Jr, and D. Quinlan, in Proceed-
ings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(2016) pp. 111–122.

37E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier, M. König, J. K. Medley, M. H. Swat, and
H. M. Sauro, Bioinformatics 31, 3315 (2015).

21

http://dx.doi.org/10.1145/3916.3988
https://github.com/KarrLab/de_sim

	Exact Parallelization of the Stochastic Simulation Algorithm for Scalable Simulation of Large Biochemical Networks
	Abstract
	I Introduction
	II The Stochastic Simulation Algorithm
	A A summary of SSA

	III Introduction to parallel SSA
	A Objectives
	B Opportunities for parallelism
	C Overview of the parallel SSA approach

	IV The parallel SSA algorithm
	A Transforming a reaction network into a parallel simulation
	1 Encode the reaction network's dependencies into a directed graph
	2 Partition the dependency graph
	3 Designing the partitioning algorithm
	4 Encoding the reaction network into simulation objects

	B Architecture of parallel SSA

	V The parallel SSA algorithm
	A Structure SSA as an object-oriented discrete event simulation application
	B An exact parallel SSA algorithm
	1 Handling updates to shared species used by rate laws

	C Class algorithms for parallel SSA
	1 The SSP class
	2 The SSA class

	D Correctness of the parallel SSA algorithm
	1 Dependencies among simultaneous parallel SSA event messages

	E Compartments
	F Practical considerations for the PDES simulator

	VI Optimizations and evaluation
	A Optimizing parallel SSA
	B Evaluation

	VII Next steps
	VIII Conclusions
	 Acknowledgments
	 References

