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Whole-cell computational models aim to predict cellular

phenotypes from genotype by representing the entire genome,

the structure and concentration of each molecular species,

each molecular interaction, and the extracellular environment.

Whole-cell models have great potential to transform

bioscience, bioengineering, and medicine. However, numerous

challenges remain to achieve whole-cell models. Nevertheless,

researchers are beginning to leverage recent progress in

measurement technology, bioinformatics, data sharing, rule-

based modeling, and multi-algorithmic simulation to build the

first whole-cell models. We anticipate that ongoing efforts to

develop scalable whole-cell modeling tools will enable

dramatically more comprehensive and more accurate models,

including models of human cells.
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Introduction
Whole-cell (WC) computational models aim to predict

cellular phenotypes from genotype and the environment

by representing the function of each gene, gene product,

and metabolite [1��]. WC models could unify our under-

standing of cell biology and enable researchers to perform

in silico experiments with complete control, scope, and

resolution [2�,3��]. WC models could also help bioengi-

neers rationally design microorganisms that can produce

useful chemicals and act as biosensors, and help physi-

cians design personalized therapies tailored to each

patient’s genome.

Despite their potential, there is little consensus on how

WC models should represent cells, what phenotypes WC
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models should predict, or how to achieve WC models.

Nevertheless, we and others are beginning to leverage

advances in measurement technology, bioinformatics,

rule-based modeling, and multi-algorithmic simulation

to develop WC models [4�,5�,6,7��,8�,9�]. However, sub-

stantial work remains to achieve WC models [10��,11��].

To build consensus on WC modeling, we propose a set of

key physical and chemical mechanisms that WC models

should aim to represent, and a set of key phenotypes that

WC models should aim to predict. We also summarize

the experimental and computational progress that is

making WC modeling feasible, and outline several tech-

nological advances that would help accelerate WC

modeling.

Note, our proposals focus on defining WC models that are

needed for research studies and applications such as

bioengineering and personalized medicine which depend

on understanding the molecular details of the majority of

intracellular processes. However, research that depends

on fewer intracellular processes could be served by smal-

ler, focused models.

Physics and chemistry that WC models should
aim to represent
We propose that WC models aim to represent all of the

chemical reactions in a cell and all of the physical pro-

cesses that influence their rates (Figure 1a). This requires

representing (a) the sequence of each chromosome, RNA,

and protein; the location of each chromosomal feature,

including each gene, operon, promoter, and terminator;

and the location of each site on each RNA and protein; (b)

the structure of each molecule, including atom-level

information about small molecules, the domains and sites

of macromolecules, and the subunit composition of com-

plexes; (c) the subcellular organization of cells into orga-

nelles and microdomains; (d) the participants and effect

of each molecular interaction, including the molecules

that are consumed, produced, and transported, the molec-

ular sites that are modified, and the bonds that are broken

and formed, (e) the kinetic parameters of each interaction;

(f) the concentration of each species in each organelle and

microdomain; and (g) the concentration of each species in

the extracellular environment. In addition, to enable WC

models to be rigorously tested, each WC model should

represent a single, well-defined experimental system. To

minimize the complexity of WC models, we recommend

modeling small, fast-growing, non-adherent, autonomous,

self-renewing cells growing on defined, rich,
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The physical and chemical mechanisms that WC models should aim to represent (a) and the phenotypes that WC models should aim to predict

(b).
homogeneous media. Together, this would enable WC

models to describe how cellular behavior emerges from

the combined function of each gene and genetic variant,

and capture how cells respond to changes in their internal

and external environments.

Phenotypes that WC models should aim to
predict
We also propose that WC models aim to predict the

behavioral trajectories of single cells over their life cycles,

with each simulation representing a different cell within a

heterogeneous clonal population (Figure 1b). This should

include behaviors within individual cells such as the

stochastic dynamics of each molecular interaction; the

temporal dynamics of the concentration of each species;

the spatial dynamics of the concentration of each species

in each organelle and microdomain; and complex pheno-
types such as cell shape, growth rate, motility, and fate, as

well as the variation in the behavior of single cells within

clonal populations. Together, this would enable WC

models to capture how stochastic and single-cell variation

can generate phenotypic diversity; how a cell responds to

external cues such as nutrients, growth factors and drugs;

and how a cell coordinates critical events such as the G1/S

transition. This would also enable WC models to generate

predictions that could be embedded into higher-order

multiscale models. For example, WC models could pre-

dict the timing and speed of chemotaxis, which could

help multiscale models predict tumor metastasis.

Available resources
Achieving WC models will require extensive data to

constrain every parameter. Fortunately, measurement
Current Opinion in Biotechnology 2018, 51:97–102 
technology is rapidly advancing. Here, we review the

latest methods for generating data for WC models, and

highlight repositories and other resources that contain

useful data for WC modeling.

Measurement methods

Advances in single-cell and genomic measurement are

rapidly generating data that could be used for WC model-

ing [12–14] (Table S1). For example, Meth-Seq can

assess epigenetic modifications [15], Hi-C can determine

chromosome structures [16], ChIP-seq can determine

protein-DNA interactions [17], fluorescence microscopy

can determine protein localizations, mass-spectrometry

can quantitate metabolite and protein concentrations,

FISH [18] and scRNA-seq [19] can quantitate the dynam-

ics and single-cell variation of RNA abundances, and

fluorescence microscopy and mass cytometry [20] can

quantitate the dynamics and single-cell variation of

protein abundances. In particular, WC models can be

constrained by combining high-dimensional measure-

ment methods with multiple genetic and environmental

perturbations, frequent temporal observations, and cut-

ting-edge distributed parameter estimation methods.

However, substantial work remains to develop methods

that can measure non-model organisms including small,

slow-growing, and unculturable cells.

Data repositories

Researchers are also rapidly aggregating much of the data

needed for WC modeling into public repositories

(Table S2). For example, UniProt contains a multitude

of information about proteins [21]; BioCyc contain exten-

sive information about interactions [22]; ECMDB [23],
www.sciencedirect.com
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ArrayExpress [24], and PaxDb [25] contain metabolite,

RNA, and protein abundances, respectively; and SABIO-

RK contains kinetic parameters [26]. Furthermore, meta-

databases such as Nucleic Acid Research’s Database Sum-

mary contain lists of repositories [27].

Prediction tools

For certain types of data, accurate prediction tools can be

superior to direct experimental evidence which may have

incomplete coverage or may be limited to a small number

of genotypes and environments. Currently, many tools

can predict properties such as operons, RNA folds, and

protein localizations (Table S3). For example, PSORTb

predicts the localization of bacterial proteins [28]. How-

ever, many current prediction tools lack sufficient accu-

racy for WC modeling.

Published models

WC models can also incorporate separately published

models of individual pathways. Currently, there are sev-

eral model repositories which contain numerous cell

cycle, circadian rhythm, electrical signaling, signal trans-

duction, and metabolism models (Tables S4 and S5).

However, most pathways such as RNA degradation do

not yet have genome-scale dynamical models, many

reported models are not publicly available, and it is

difficult to merge most published models because they

often use different assumptions and representations.

Emerging methods and tools

Recent advances in data aggregation, model design,

model representation, and simulation (Table S6) are also

rapidly making WC modeling feasible. We expect that

ongoing efforts to adapt and combine these advances will

accelerate WC modeling [9] (Figure 2). Here, we sum-

marize the most important emerging methods and tools

for WC modeling.
Figure 2
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Data aggregation and organization

For optimal accuracy and scope, WC modeling should be

tightly coupled with targeted experimentation. Never-

theless, we believe that WC modeling currently can be

most cost-effectively advanced by leveraging the exten-

sive array of public data. To make this public data usable

for modeling, researchers are developing automated

methods for extracting data from publications [29], build-

ing central public repositories [30], and creating tools for

programmatically accessing repositories [31]. Pathway/

genome database (PGDB) tools such as Pathway Tools

[31] are well-suited to organizing this data because they

support structured representations of metabolites, DNA,

RNA, proteins, and their interactions. However, they

provide limited support for non-metabolic pathways

and quantitative data. To overcome these limitations,

we developed the WholeCellKB tool to organize data

for WC modeling [32].

Scalable model design

Several new tools can help researchers develop large

models. For example, the Cell Collective facilitates col-

laborative model design [33], MetaFlux facilitates the

design of constraint-based models from PGDBs [34],

PySB facilitates programmatic model construction [35],

SEEK facilitates model design from data tables [36], and

Virtual Cell facilitates model design from KEGG and

SABIO-RK [37].

Model languages

Researchers have developed several languages for repre-

senting biochemical models. SBML can represent several

types of models including flux balance analysis models,

deterministic dynamical models, and stochastic dynamical

models [38]. Rule-based languages such as BioNetGen can

efficiently describe the combinatorial complexity of pro-

tein-protein interactions [39].
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thousands of publications, repositories, and prediction tools and

idated from PGDBs and described using rules. (c) Models should be

 results should be stored in a database. (d) Simulation results should

to experimental measurements. Importantly, all of these steps should
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Simulation

Numerous tools can simulate biomodels. For example,

COPASI [40] and Virtual Cell [37] support deterministic,

stochastic, hybrid deterministic/stochastic, network-free,

and spatial simulation; COBRApy supports constraint-

based simulation [41]; and E-Cell supports multi-algo-

rithmic simulation [42�].

Calibration

New tools such as saCeSS [43] support distributed cali-

bration of large biochemical models. In addition, aero-

space and mechanical engineers have developed methods

for using reduced surrogate models to efficiently calibrate

large models [44].

Verification

Researchers have begun to adapt formal model checking

techniques to biomodeling. For example, BioLab [45]

and PRISM [46] can verify BioNetGen-encoded and

SBML-encoded models, respectively.

Simulation results analysis

Tools such as COPASI [40] and Virtual Cell [37] can

visualize simulation results. We have developed the

WholeCellSimDB [47] simulation results database to

help researchers organize, search, and share WC simula-

tion results. We have also developed the WholeCellViz

[48] simulation results dashboard to help researchers

visualize WC simulation results in their biological

context.

Technological challenges
Beyond these emerging tools, several technological

advances are needed to enable WC models. Here, we

summarize the most critically needed technologies.

Experimental measurement

While substantial data about cellular populations already

exists, additional data would enable better models. In

particular, we need metabolome-wide and proteome-

wide measurement technologies that can quantitate the

dynamics and single-cell variation of each metabolite

and protein. Additionally, we need technologies that

can measure kinetic parameters at the interactome scale

and technologies that can measure cellular phenotypes

across multiple genetic and environmental conditions.

Furthermore, to enable WC models of a broad range of

organisms, we also need technologies that can measure

non-model organisms, including small, slow-growing,

motile, and unculturable organisms.

Prediction tools

While existing tools can predict many properties of

metabolites, DNA, RNA, and proteins, additional tools

are needed to accurately predict the molecular effects of

insertions, deletions, and structural variants. Such tools
Current Opinion in Biotechnology 2018, 51:97–102 
would help WC models design microbial genomes and

predict the phenotypes of individual patients.

Data aggregation

As described above, extensive data is now available for

WC modeling. However, this data is scattered across

many repositories and publications; this data spans a wide

range of data types, organisms, and environments; this

data is described using inconsistent identifiers and units;

and this data is often not annotated or normalized. To

make this data more usable for modeling, we are devel-

oping a framework for aggregating data from repositories;

merging data from multiple species, environmental con-

ditions, and experimental procedures; standardizing data

to common units; and identifying the most relevant data

for a model.

Scalable, data-driven model design

To scale WC modeling, we need tools for collaboratively

building large models directly from experimental data,

recording how data is used to build models, and identify-

ing gaps and inconsistencies in models. As described

above, several tools support each of these functions.

To accelerate WC modeling, the field must develop an

extensible platform that supports all of these functions at

the scale required for WC modeling.

Rule-based model representation

Several languages can represent individual biological

processes, but no existing language supports all of the

biological processes that WC models must represent

[49,50]. To overcome this limitation, we are developing

a rule-based language that can represent each molecular

species at multiple levels of granularity (e.g. as a single

species, as a set of sites, and as a sequence); the combi-

natorial complexity of each molecular species and inter-

action; composite, multi-algorithmic models; and the data

used to build models.

Scalable multi-algorithmic simulation

Simulating WC models requires a simulator that supports

both network-free interpretation of rule-based model

descriptions and multi-algorithmic co-simulation of sub-

models that are described using different simulation

algorithms. However, no existing simulator supports both

network-free and multi-algorithmic simulation. To scal-

ably simulate WC models, we are using Rete algorithms

and parallel discrete event simulation to develop a paral-

lel, network-free, multi-algorithmic simulator [9].

Calibration and verification

Scalable tools are needed to calibrate and verify WC

models. Although we and others have begun to explore

surrogate strategies for efficiently calibrating and validat-

ing WC models [51], further work is needed to formalize

these methods.
www.sciencedirect.com
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Simulation analysis

We and others have developed tools for organizing and

visualizing simulation results, but they provided limited

support for large datasets or custom visualizations such as

pathway maps. To visualize WC simulation results,

researchers should use distributed database and data

processing technologies to search and reduce simulation

results, standard visualization grammars to enable flexible

and custom visualizations, and high-performance visuali-

zation toolkits to handle terabyte-scale simulation results.

Collaboration

Ultimately, achieving WC models will require extensive

teamwork.Tofacilitatecollaboration, thefield mustdevelop

collaborative model design tools, version control systems for

models, standards for annotating and verifying submodels,

and protocols for merging separately developed submodels.

Conclusion
WC models have great potential to advance bioscience,

bioengineering, and medicine. However, significant chal-

lenges remain to achieve WC models. To advance WC

modeling, we have proposed how WC models should

represent cells and the phenotypes that WC models

should predict, and summarized the best emerging meth-

ods and resources for WC modeling. We have also out-

lined several technological solutions to the most imme-

diate challenges to WC modeling. Specifically, we must

develop new tools for scalably and collaboratively design-

ing, simulating, calibrating, validating and analyzing mod-

els. We must also develop new methods for measuring the

dynamics and single-cell variation of the metabolome and

proteome and for measuring kinetic parameters at the

interactome scale. Despite these challenges, we and

others are building the first WC models, developing

the first WC modeling tools, and beginning to form a

WC modeling community [49,51]. We anticipate that

these efforts will enable comprehensive models of cells.
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