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ABSTRACT 
Whole-cell (WC) models comprehensively predict cellular 
phenotypes by simulating the biochemistry in individual cells. WC 
models have the potential to enable bioengineers and physicians to 
rationally design microorganisms and medical therapies. WC 
models are developed by combining multiple mathematically 
distinct pathway sub-models into a single multi-algorithm model. 
The only existing WC model represents a small bacterium. 
However, to enable medical therapy, new scalable methods are 
needed to model human cells that contain 100 times more molecular 
species and 10,000–100,000 times more molecules. We describe the 
design of a novel system for building and simulating WC models, 
including an expressive sequence- and rule-based modeling 
language and a multi-algorithm simulator that employs optimistic 
parallel discrete event simulation.  
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1. INTRODUCTION 
A central goal of biology is to understand how genotype and 
environment influence phenotype. However, despite decades of 
research, a wealth of quantitative data, and extensive knowledge, we 
still do not understand these causal relationships [10]. 
Our long-term goal is to create whole-cell (WC) computational 
models that accurately predict how genotype influences phenotype 
by representing all of the biochemical processes inside cells. WC 
models have the potential to accelerate biological discovery by 
enabling unprecedented computational experiments. These models 
could transform microbial bioengineering and medicine. Microbial 
WC models could enable bioengineers to rationally design genomes 
to perform practical tasks, such as efficiently produce biofuels and 
drugs, or sequester carbon. Human WC models could enable 
physicians to personalize medical therapy for individual patients. 
For example, an analytical oncologist would use omics analyses of a 
patient’s tumor to construct a personalized WC model, and then use 
the model to identify the patient’s optimal drug treatment plan 
(Figure 1). WC models could also help scientists identify new drug 
targets. 

Recently, we and our collaborators created the first WC model, 
which analyzes the bacterium Mycoplasma genitalium [5]. The 
model is composed of 28 mathematically distinct pathway sub-
models. It describes the function of every biologically understood 

 
Figure 1. WC models could inform medicine. Patients (A) 
could be biopsied (B), tumors could be analyzed by omics 

techniques (C), this data could personalize WC models (D), 
and oncologists could use these models to design therapy (E). 

gene and predicts the dynamics of every molecular species over 
the cell cycle of a single M. genitalium. The model was 
extensively validated against independent experimental data. We 
have used the model to discover novel biological insights, 
calculate the metabolic costs of synthetic circuits, and reposition 
antibiotics.  

However, the model does not represent several cell functions or 
predict certain phenotypes, and the methods used to build the 
model were inefficient and not systematic. The model was 
developed over 4 years by manually curating hundreds of 
databases and scientific papers and by writing 3,000 pages of 
MATLAB. 

WC modeling must be systemized in order to achieve models of 
human cells that have 40 times more genes and 104–105 times 
more molecules than M. genitalium. 

To address the challenges above, we are developing a systematic 
and scalable six-step process for WC modeling: 1) 
comprehensively curate experimental data about the cell being 
modeled, and store the data in a database; 2) design and program 
the model; 3) simulate the model with high accuracy and speed; 4) 
estimate the model’s parameters; 5) verify and validate the model; 
and 6) analyze model predictions to gain new biological insights, 
design genomes, or personalize medicine. This process will be 
iterated to improve the model. 

This paper describes our designs for steps 2 and 3: a language for 
describing WC models and a multi-algorithmic, Time Warp 
parallel discrete event simulator for simulating WC models. In 
other work, we are developing new methods to accelerate steps 1 
and 4-6. We motivate our designs with examples of the challenges 
presented by modeling human cells. 

2. EXISTING MODELING METHODS AND 
THEIR LIMITATIONS 
Multiple modeling formalisms have been developed to predict the 
dynamics of biochemical pathways. Here we discuss some of the 
most common approaches and their limitations. 

Ordinary differential equations (ODEs) are frequently used to 
model biochemical systems. This method assumes that a cell is a 
well-mixed container of molecules. ODEs have been used to 
model several well-studied signaling pathways. However, ODEs 
cannot represent stochastic processes and cannot be used to model 
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entire cells because they require more kinetic data than is 
available for some pathways.  

The Stochastic Simulation Algorithm (SSA) is widely used to 
predict stochastic processes [2]. However, SSA also requires more 
kinetic data than is currently available for some pathways. 

Flux Balance Analysis (FBA) [7] is commonly used to model 
cellular metabolism. Given a cell’s metabolic biochemical 
reactions and the cell’s chemical composition, FBA predicts the 
steady-state flux of each reaction. FBA does not require kinetic 
data. However, FBA cannot be used to model entire cells because 
it relies on assumptions which are only satisfied by metabolic 
pathways and it does not predict cellular dynamics. 
Numerous other useful methods are also used to model various 
biochemical pathways in cells. These include rule-based 
modeling, partial differential equations, logical modeling, agent-
based modeling, and Petri Nets. 

2.1 Multi-algorithm WC modeling 
No existing modeling formalism is suitable on its own for 
building fine-grained models of entire cells because the current 
fine-grained modeling methods require pathways to be modeled at 
the same level of granularity, and we do not have sufficient 
experimental data to finely describe every pathway. 

Recently, we and others pioneered a multi-algorithmic approach 
to WC modeling [5]. This approach enables modelers to represent 
each pathway using the most appropriate mathematical 
representation driven by data availability. Separate sub-models are 
built for each pathway and combined into a single model. We 
used this approach to manually build a WC model of M. 
genitalium which is composed of 28 sub-models. 

However, the WC modeling approach taken by this previous work 
is inadequate for efficiently developing WC models, especially of 
human cells. In particular, the biological properties of the M. 
genitalium model are difficult to understand because the model 
was described by a 3,000 page program, and the multi-algorithm 
simulation software was slow because it is single-threaded. 

3. SCALING TO HUMAN WC MODELS 
We aim to develop WC models of human cells which are orders 
of magnitude bigger and more complex than M. genitalium (Table 
1). By comparison with M. genitalium, typical human cells 
contain 42 times more genes and approximately 100 times more 
protein types. In addition, their genomes are 6,000 times larger, 
and they contain qualitatively more biological compartments. 
Thus, human WC models will be far more complex and 
computationally expensive than any prior model.  

3.1 Computational complexity 
Most human cells are 104–105 times more voluminous than M. 
genitalium. The computational cost of simulating larger cells 
increases linearly with cellular volume. This occurs because the 
SSA modeling formalism, which is used to model many well-

characterized pathways and is the most computationally costly 
formalism, has a cost that scales linearly with the number of 
reactions it models. The number of reactions modeled with SSA 
scales linearly with the number of molecules being modeled, 
which grows linearly with cellular volume because molecular size 
varies little between organisms. Thus, we expect the computing 
cost of simulating WC models to grow linearly with cell volume. 

Based on the 1 core-day cost of simulating the M. genitalium 
model and the 104–105 times greater size of human cells, we 
estimate that it will take 104–105 core-days to simulate one cell-
cycle of a human cell. Assuming a pragmatic maximum 
acceptable execution time of 10 days, human WC model 
simulations must therefore be parallelized on at least 103–104 
cores. 

4. SYSTEMIZING WC MODELING 
To enable WC models of substantially larger and more complex 
cells, including models of human cells, we are developing new 
methods and software tools to formalize and accelerate every step 
of the WC modeling process. 

WC models are primarily composed of chemical species and 
biochemical reactions which transform these species. In addition, 
WC models represent the cell wall and compartments inside the 
cell. These model components should be described concisely and 
comprehensibly so that WC models can be easily developed, 
understood, reused, and modified. To enable descriptions of WC 
models with these properties, we are developing a WC model 
description language.  

To quickly and accurately simulate WC models, we are 
developing a new parallel multi-algorithm model simulator. The 
simulator will be a parallel discrete event simulation application 
(PDES) [4]. To enable highly parallel simulations, the species and 
reactions which compose WC models must be partitioned into 
large numbers of modules that interact infrequently with each 
other to provide adequate parallelism (Figure 2). The natural 
spatial locality of biological processes in cells and an analysis of 
the M. genitalium model (not shown) indicate that this clustering 
will be feasible because most pathways only interact with a small 
subset of all of the modeled species. 

The simulation maintains the state of species in the cell. It stores 
the population of each species in each compartment. It also stores 
the configuration details of many individual macromolecules, 
such as DNA, RNA and proteins. To allow parallel access to the 
species state, it will be partitioned into species modules (Figure 2). 
Each species module will store the state of many species. 

Simulation time will synchronize interactions between reaction 
modules and species modules. 

 
Figure 2. WC model partitioning. To enable parallel 

simulation, WC models will be partitioned into species and 
reaction modules. Each module will run in a PDES logical 

process. Each reaction module will interact (arrows) with a 
small set of species modules. 
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Table 1. Relative sizes of M. genitalium and human cells. 

  M. 
genitalium Homo sapiens Scale factor 

Genes 525 21,983 42 

Protein types 525 ~50,000 ~100 

Volume 0.02 µm3 500–5,000 µm3 2.5 x 104 – 2.5 x 105  
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5. DESCRIBING WHOLE-CELL MODELS 
To provide maximum flexibility, the domain-specific WC model 
description language will be implemented as a software library. 
The language offers two novel features. First, the language will 
access a database of experimental data needed to build a WC 
model. This database is created by the curation in step 1 of the 
WC modeling process summarized in Section 1. These data 
contain extensive information about the cell, including its 
genome, metabolite concentrations, RNA and protein population 
counts, RNA and protein half-lives, biochemical reactions, 
protein-protein interactions, and kinetic reaction rates. Second, the 
language will support concise and powerful rules for using this 
data to describe species and reactions in a model. Thus, the 
language will enable WC modelers to seamlessly integrate 
genomics with large-scale dynamical modeling. 

The modeling language will provide several critical innovations to 
allow scaling to human WC models: 1) The language will support 
multi-algorithmic modeling by enabling the modeler to specify the 
modeling algorithm of sets of reaction. 2) To describe the 
combinatorial complexity of biological systems, the language will 
support data-based modeling, or the definition of species and 
reaction patterns in terms of patterns based on biochemical, 
genomic, and other experimental data. Data-based modeling will 
generalize rule-based modeling and enable WC models to 
explicitly combine genomics with large-scale dynamical 
modeling. 3) The language will implement species as typed 
objects. This will enable the language to efficiently handle 
genomic and other specialized biological data. 

5.1 Specifying species 
Modelers will define species by instantiating objects with 
experimental data from the curated database. To help modelers 
efficiently develop models, the language will provide an extensive 
set of types of biological molecules, such as proteins and nucleic 
acids like DNA and RNA. The language will include many of the 
species types used in typical models. Each species type will 
incorporate attributes to represent the structural and functional 
properties of that biomolecule, such as the sequences and half-
lives of RNA and proteins. Modelers will also be able to create 
new species types or extend existing ones. 
Additionally, each species type will support an associated species 
pattern that will enable convenient retrieval of instances of the 
species that have attributes specified in the pattern. 

The species types will be implemented as a hierarchy. For 
example, the messenger RNA (mRNA) and ribosomal RNA 
(rRNA) species types will be implemented as subtypes of the 
RNA species type. We will use object composition to support 
compound types such as complexes composed of RNA and 
protein subunits. 

5.2 Specifying reactions as rules 
The language will support the description of reactions as patterns 
that encode biological principles which generalize across many 
individual reactions. Because each biological principle can 
encompass numerous reactions, describing reactions as patterns 
can avoid a combinatorial explosion of reaction descriptions that 
would make models infeasible. For example, proteins that bind to 
DNA recognize specific DNA sequences known as motifs. The 
new language will enable modelers to store observed DNA 
binding motifs in the attributes of protein objects and then define 
a single reaction pattern that represents all of the reactions in 
which a protein binds to a chromosomal DNA region that has an 
observed sequence motif.  

As discussed in Section 6 below, our new WC simulator will 
dynamically evaluate and expand these species and reaction 
patterns to determine the set of active reactions. 

Figure 3 illustrates the instantiation of a reaction pattern that 
describes the binding of proteins to DNA. The modeling language 
will support analogous textual descriptions of reaction patterns. 

 
Figure 3. Instantiation of a reaction pattern. We visualize the 

instantiation of a specific reaction that matches a reaction 
pattern describing protein (lozenges) binding to DNA 
(rectangles). The reaction is bidirectional (arrow) with 

reactants on the left by convention and products on the right. 
The motif in the protein matches a motif in the DNA (red text 

in product) so they can bond (red line). 

6. SIMULATING WHOLE-CELL MODELS 
Most pathway simulation tools [3, 6, 8, 9] use only one modeling 
algorithm at a time. However, as discussed in Section 2.1, to 
represent all of the pathways in a cell, WC models must 
simultaneously employ multiple modeling algorithms. 
Furthermore, as discussed in Section 3, to scale up to WC models 
of human cells, WC models must be simulated in parallel. To 
achieve speedup using many cores and their memory we are 
developing a parallel WC simulator that will be implemented as a 
PDES application that runs on an optimistic PDES system, such 
as ROSS [1]. The simulation consists of both reaction modules 
and species modules. It will execute each reaction module and 
each species module inside a separate PDES logical process. The 
processes will communicate via PDES event messages (Figure 4). 

Each reaction module will run in a PDES logical process, and use 
one biochemical modeling method. We will develop custom 
wrappers to interface continuous and static simulation algorithms 
such as ODEs and FBA with PDES. Multi-algorithm techniques 
for using continuous methods like ODEs in optimistic PDES 
processes are under study, but outside the scope of this paper. 
Each reaction module will include the logic needed to retrieve the 
relevant species values from the species modules, run its modeling 
algorithm, and update the pertinent species values in the species 
modules.  

 
Figure 4. WC model as a PDES application. Each component 
of the model – reaction modules (blue) and species modules 

(green) – will be executed inside a PDES logical process. 
Reaction modules and species modules interact with each 

other via PDES event messages (arrows).  
The simulator will support the most common biochemical 
modeling algorithms, including SSA, ODEs, and FBA. Wherever 
possible, we will reuse existing simulation libraries that support 
these modeling algorithms, such as libRoadrunner [9]. SSA will 
integrate naturally into a PDES application because SSA is a 
discrete event algorithm. In fact, PDES is well-suited for WC 
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simulation because SSA is directly compatible with PDES and 
SSA is one of the most useful biochemical simulation algorithms. 

6.1 Partitioning reactions into modules 
As discussed in Section 3, to achieve practical simulation 
execution times and to effectively utilize PDES, we estimate that 
human WC models must be partitioned into at least 103–104 

modules. Given this scale, the reactions in WC models must be 
partitioned algorithmically. 

The partitioning algorithm’s objective is to create a partition that 
minimizes simulation run-time. However, given the complexity of 
WC models, the run-time cannot be directly estimated. Instead, 
we use an alternative computable heuristic which minimizes the 
interactions between reaction modules. 

This approach constructs a graph in which the nodes represent 
reaction patterns, edges connect reactions that share at least one 
common species, and edge weights represent the total frequency 
of the connected reactions. Reaction frequencies will be estimated 
from the reaction rate laws and rate parameters. Clustering 
algorithms will be used to partition the graph into loosely-
connected reaction modules. 
We anticipate that this clustering will improve simulation 
performance by reducing PDES network messages and Time 
Warp rollbacks [4]. 

6.2 Partitioning species into modules 
We will use a similar approach to partition species into modules. 
The approach associates each species with the reaction module 
that most heavily uses the species (Figure 5). We will then co-
locate these pairs of reaction and species modules to minimize 
network traffic and Time Warp rollbacks. 

 
Figure 5. Heuristic for partitioning a WC model species state. 

First, reactions will be partitioned into modules (blue) as 
discussed in Section 6.1. Second, one species module (green) will 

be associated with each reaction module. Third, each species 
(salmon) is assigned to the species module associated with the 

reaction module that most heavily uses the species. The 
thickness of the black lines connecting reaction modules and 
species indicates the total rate at which modules use species. 

7. SUMMARY 
Our long-term objective is to use WC models of bacteria and 
human cells to advance biological science, bioengineering, and 
medicine. We envision using these models for a wide range of 
applications, including rationally designing microorganisms for a 
variety of industrial, agricultural and medical applications; 
predicting new drug targets; interpreting personal omics data; and 
identifying an optimal drug or drug combination for individual 
patients.  

Significant research and engineering is needed to achieve these 
goals. We are beginning by developing algorithms and software 
for systematically building and simulating WC models. To ensure 
that the new tools meet all of the requirements for WC modeling 
and are practical, we plan to pilot the tools in conjunction with 
building the first human WC model. Thus, we anticipate that the 
tools will enable vastly more comprehensive and accurate WC 
models, including models of human cells.  

We plan to publish the software tools open-source, along with 
extensive documentation, tutorials, and examples. In addition, we 
plan to integrate the software tools into a comprehensive, user-
friendly platform for building, simulating, and analyzing WC 
models.  

This platform will contain numerous innovations, including a WC 
modeling language that modelers can use to create compact and 
comprehensible multi-algorithm models, and an accurate, high-
performance PDES whole-cell model simulator. 

We anticipate that the methods and software outlined in this paper 
will dramatically advance WC modeling, thereby enabling routine 
use of whole-cell models in bioengineering and medicine. 
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